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ABSTRACT: Metabolic engineering aims to produce chem-
icals of interest from living organisms, to advance toward
greener chemistry. Despite efforts, the research and develop-
ment process is still long and costly, and efficient computa-
tional design tools are required to explore the chemical
biosynthetic space. Here, we propose to explore the
bioretrosynthesis space using an artificial intelligence based
approach relying on the Monte Carlo Tree Search reinforce-
ment learning method, guided by chemical similarity. We
implement this method in RetroPath RL, an open-source and
modular command line tool. We validate it on a golden data
set of 20 manually curated experimental pathways as well as
on a larger data set of 152 successful metabolic engineering
projects. Moreover, we provide a novel feature that suggests potential media supplements to complement the enzymatic
synthesis plan.
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Efficient computational tools are required for metabolic
engineering to achieve its true potential as a game-changer

in the bioeconomy. Such tools include pathway design software
to assist the metabolic engineer in finding new pathways for
production of valuable chemicals. While some tools restrict
themselves to reactions already present in databases,1,2 others
allow the generation of de novo reactions, using retrosynthesis
algorithms.3−11 At its core, a retrosynthesis algorithm is simple:
break down a target molecule into simpler molecules that can be
combined chemically or enzymatically to produce it and iterate
recursively until all required compounds are either commercially
available or present in the microbial strain of choice. Current
bioretrosynthesis tools suffer from several limits. First of all, they
are usually accessible through aWeb server and not open-source,
limiting an expert user’s capacity to install them locally and tune
them. Second, a number of parameters are often included within
the pathway search, decided by the software designer and with
limited capacity for a user to incorporate his own knowledge,
solving for both retrosynthesis and parameters optimization.
Some examples include enzyme performance,11 predicted
yield,6−8,12,13 thermodynamics or cofactor usage.10 Moreover,
those tools do not include the latest advances in combinatorial
search space exploration, pioneered in the field of artificial
intelligence.
To address those limitations, we propose to make use of the

Monte Carlo Tree Search (MCTS) reinforcement learning
algorithm which has already revolutionized the field of artificial

intelligence, as illustrated by the stunning victory of Google’s AI
(AlphaGo) against a Go master in 2016.14−16 An interesting
application used this algorithm combined with neural networks
in chemical retrosynthesis, but acknowledging that natural
compounds synthesis was beyond their scope.17 To make
available the algorithm to the wider audience, we implement it as
RetroPath RL, an open source python package freely available
on GitHub. RetroPath RL provides a programmatic access to
discover biosynthesis pathways using MCTS, while allowing a
number of augmentations and features to be used or developed
by expert users to tune it to their needs. Lack of open-source
computer-assisted pathway design tools is currently pointed out
as one of the major limits faced by metabolic engineering
projects.18,19 Therefore, RetroPath RL is a timely software that
will hopefully contribute to metabolic engineering realizing its
true potential for green chemistry.
We propose first an explanation of the theoretical background

giving context to the present work.

■ RESULTS AND DISCUSSION

Reaction Rules for Representing Enzymatic Reactions.
Reaction rules describe the changes in bonding patterns when a
set of substrates is transformed into a set of products in order to
encode enzymatic reactions for retrosynthesis. An important
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feature of rules for retrosynthetic applications is that they need
to be generalizable, so that they can be applied to a new substrate
that was not from among the substrates the rules were learned
on. Moreover, using generalized reaction rules is the first step
toward predicting promiscuous reactions, as those reactions are
often missing from metabolic databases. Modeling promiscuity
is a key feature in metabolic engineering, as it has for example
been estimated that 37% of Escherichia coli K12 enzymes have a
promiscuous activity on structurally similar substrates.20

In our data-driven approach, we learn rules at various levels of
specificity around the reaction present in the database, by
keeping in the described pattern of the rule a varying number of
atoms around the reaction center. We select those atoms using a
number we call diameter that represents the distance in bonds
around the reaction center: a rule at diameter 2 will include
atoms at a distance of 1 around the reaction center, while a rule a
diameter 10 will include atoms at a distance of 5 around the
reaction center. Therefore, the rule at diameter 2 can apply to
more diverse substrates and therefore encode more promiscuity
than the rule at diameter 10. A more detailed description of
reaction rules can be found in the literature11,21 and in the
Materials and Methods section.
Necessity of Ranking Reactions.The number of rules that

can be applied greatly varies depending on the level of
promiscuity considered and the chemical structure of the
substrate. If this number is low enough, an exhaustive search can
be considered, but otherwise, applying chemical reaction rules
iteratively on substrates and their products leads to a
combinatorial explosion. Encoding of reaction rules at various
diameters allows selection of the degree of promiscuity, which
has a high impact on those statistics. As an example, results for
the rule sets used in this study are presented in Table 1, and for

individual diameters in Supplementary Table S1. We can see
from this table that the branching factor (the average number of
rules that apply to a substrate) is around 100 when using rules at
diameters 6, 10, and 16 (slightly promiscuous, medium, and very
specific) and drastically increases with the level of promiscuity
(adding rules at diameter 2 that are highly promiscuous lead to a
branching factor of 900). Therefore, the more promiscuity we
allow, the higher our branching factor becomes.
Such a high branching factor is comparable to the Go game

(branching factor of 250) and much higher than chess (35), and
the reason why using algorithms that were successful in this
domain could also be of interest for retrosynthesis.14,17 We
therefore use an algorithm (MCTS) that can effectively handle
this combinatorial explosion, and a heuristic (chemical
similarity) to guide the search.
Chemical Similarity and Sequence Availability for

Reaction Ranking. Chemical similarity between query
(applied on a new substrate) and the native chemical
transformation has been used in various studies.8,12,22,23 We
adapted the strategy from Coley et al. that proceeds in a 2-step
evaluation of the reaction. In a first step, before rule application,

similarity between query and native substrates is calculated.
After rule application, similarity between native and query
products is also calculated. This allows accounting of similarity
in a manner straightforward to use with monocomponent
reaction rules (Figure 1A). Using this metric allows us to select
chemical reactions similar to the ones present in metabolic
databases, increasing our chances that this predicted reaction
can be catalyzed.
However, in refs 12, 22, 23, the authors are interested in

chemical retrosynthesis, whereas we are interested in enzyme-
catalyzed reactions. Therefore, we combine (through multi-
plication) this chemical score with a scoring scheme that we
developed previously.11 Briefly, this biological score character-
izes our confidence that a sequence exists to catalyze the desired
enzymatic rule. We updated this scoring scheme to be a
normalized score, between 0 and 1, to be in the same range as the
chemical score (Figure 1B). This biological score has the useful
property that rules at low diameter (i.e., more promiscuous) are
usually ranked lower than rules at high diameters (i.e., more
specific and trustworthy).
In RetroPath RL, this combined biochemical score is used for

ranking and excluding reaction rules that are not considered
trustworthy (similarity too low to the original reaction, or
sequence availability too low).

Integrating Rule Ranking with the Monte Carlo Tree
Search Reinforcement Learning Method. Reinforcement
learning methods are a class of machine learning algorithms that
learn how to take actions in an environment so as to maximize a
cumulative reward. Their main strength is their capacity to
balance exploration of unchartered space and exploitation of
current knowledge.
A Monte Carlo Tree Search is a reinforcement learning

algorithm that explores the unknown space with random
sampling. It proceeds in 4 phases, repeated until a resource
budget (time or number of iterations) has been exhausted
(Figure 2):

• Selection. Starting from the root node (here, a chemical
state containing the target compound), the best child
nodes according to the selection policy are iteratively
chosen until a leaf node is reached. In the proposed
implementation we use a selection policy guided by the
biochemical score of the reaction rule, unless otherwise
stated.

• Expansion. Possible transformations are selected based
on the ranking scheme presented above and the node is
expanded (with a predefined maximum number of
children).

• Simulation or rollout. This is an iterative procedure that
starts by checking the status of the state. If it is terminal, a
reward (or penalty) is returned according to the
rewarding policy (detailed in the Materials and Methods
section). If it is not terminal, a transformation is randomly
sampled from available transformations and the process is
repeated. This is performed until a maximum number of
rollout steps or the maximal depth of the tree is reached.

• Backpropagation or update. The score obtained after
exploring this node is returned to its parents to update
their values and visit counts.

Evaluating RetroPath RL with a Golden Data Set. We
first evaluate our implementation ofMCTS for bioretrosynthesis
on a manually curated data set of 20 compounds to identify the
best settings for a retrosynthetic search on those compounds

Table 1. Average Number of Applicable Rules on a
Compound According to the Set of Diameters Useda

set of diameters used 6, 10, 16 2, 6, 10, 16 2, 4, 6, 8, 10, 12, 14, 16
average number of
applicable rules

100 898 1183

aInformation on average number of rules at all individual diameters
are available in Supplementary Table S1.
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(chosen compounds and rationale for selection are available in
the Materials and Methods section). This data set allows us to
verify that bioretrosynthesis tools suggest pathways that have
been experimentally described in the literature, ensuring the
biological relevance of the predicted pathways. Comparing
RetroPath RL’s features for expert users (see Supplementary
Note S1) on this golden data set allows us to select the best

parameters possible for biological relevance. While various
metrics could be available to describe what a good bioretrosyn-
thesis algorithm should do, there is no obvious consensus.
Should such an algorithm be fast? Return a lot of pathways?
Return fewer but more reliable pathways? We use three criteria
for comparing algorithms. First, it should return pathways for as
many compounds as possible. Second, results should include the

Figure 1.Chemical and biological score computations. For chemical score (A), we start by selecting substrates within the rule collection that are similar
to the query substrate. We then apply those rule templates and check similarity of those products to the products the rules were learned on. For
biological score (B), we establish rule-to-sequence relationships, and cluster all sequences based on sequence similarities. For each rule, we then count
the number of cluster n spanning all related sequences. Score normalization is detailed in Materials and Methods.

Figure 2.Monte Carlo Tree Search algorithm. Circles represent nodes, and pentagons molecules. Detailed explanations are in the main text and in the
Materials and Methods section.
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chosen literature-described experimental pathway (exact inter-
mediates are found). For parameter sets with identical results on
those two criteria, the third criterion is that a better parameter
combination should return the experimental pathway in fewer
iterations.
The best parameters set we found used chemical and

biological thresholds of 0.3, and a maximum of 10 allowed
children per node (detailed configuration is available as
Supplementary Table S2 and effects of various parameters
were investigated and presented in Supplementary Note S1). To
generate the results presented in Figure 3, we ran RetroPath 2.0,
and RetroPath RL with its default configuration and a
configuration with more tolerant chemical scores for rule
application. Detailed analysis of results on this data set is
available in Supplementary Note S2. We provide an example
result in Figure 4 for mesaconic acid, interesting as it could be a
renewable precursor to the commodity chemical methacrylic
acid.24

We can see from these results that the algorithm encoded
within RetroPath RL suggests experimentally relevant pathways
for biochemists, as it finds the exact pathway described in the
literature 75% of the time with strict settings, and 95% of the
time when trying more tolerant settings on failed compounds,
media supplementation or using another cofactor (lacking one
step is considered a failure). We can see this is better than our
previous algorithm, proving that RetroPath RL suggests more
experimentally relevant pathways for metabolic engineering.
Importance of Our Scoring Schemes. Although all

parameters of interest are evaluated in Supplementary Figures
S1−S12 in Supplementary Note S1, we detail here the impact of
the scoring cut-offs and scheme. As mentioned in the theoretical
background section, we use a biochemical score, based on both
chemical similarity and estimation of enzyme sequence
availability. We analyzed algorithm behavior for various
biological, chemical and biochemical scores, as well as when
guided only by similarity, biological score or no scoring scheme
(classical algorithm). The results are presented in Figure 5 and
validate our approach.We can see the score contributingmost to

the importance of the cutoff parameter values is the biological
score that ensures experimental availability of the enzymatic
sequence, while the score that contributes most to the guidance
of the Monte Carlo Tree Search is the chemical similarity
component, showing both scores are necessary for ensuring
efficient search and experimental relevance of predictions.

Evaluating RetroPath RL on Successful Metabolic
Engineering Projects. After validating biological relevance
of predictions for metabolic engineering, we tested RetroPath
RL on a larger data set. Our previous tool10 was tested on the
LASER database25,26 that compiles successful metabolic
engineering projects, completed with compounds taken from
the Metabolic Engineering journal (see Materials and Methods,
available as Supplementary Data S1). Given the curation level of
this data set, we checked the number of compounds for which
we could find a pathway, and not the exact experimental
pathway.
We ran our RetroPath 2.0 software using the same RetroRules

rules (diameters 6, 10 and 16) and solved 77.6% compounds
(118 out of 152), finding a median number of pathways of 4.5.
With RetroPath RL and a score cutoff of 0.3, we solved 121
compounds (79.6%) with a median number of pathways of 11.5.
Without score cutoff, we obtain 6 more compounds, yielding a
success rate of 83.6% (results are available as Supplementary
Data S2). The main advantage of the Monte Carlo Tree Search
algorithm implemented in RetroPath RL over the brute force
algorithm of RetroPath 2.0 is its capacity to find longer
pathways.When giving RetroPath RL amaximum allowed depth
of 10 steps throughout this study, it found pathways of 10 steps.
Indeed, the memory requirements of the exhaustive search
performed by RetroPath 2.0 essentially limit it to 5 step
pathways, while RetroPath RL can explore longer pathways and
therefore find more solutions given the same allowed time. Its
focus on promising areas of the search space also lead RetroPath
RL to propose more solutions for the same compound.

Supplement Finder for Media Supplementation. The
literature pathway that we identified for TPA used xylene for
media supplementation, i.e., xylene is not a metabolite from the

Figure 3. Results of the RetroPath suite against the golden data set to identify the experimental pathway. We compared results of RetroPath 2.0, the
default configuration of RetroPath RL, and a combination of results between the default configuration and a more tolerant one on the used scores with
a timeout of 3 h. With supplementation (purple) means a supplement has to be provided in the media to identify the correct experimental pathway.
One step different (dark blue) means only one step differs from the described pathway, for example, by using a different cosubstrate. One step lacking
(light blue) means the search algorithm found a pathway identical to the experimental one, except one step which was short-cut. Fully found (green)
means the experimental pathway was found without restriction. Not found (orange) means the experimental pathway was not found.
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microbial strain but was necessary for producing TPA and
experimentally added to the strain’s growth media.27 Knowing
this allowed us to add xylene to the list of starting compounds for
retrosynthetic search. Media supplementation is commonly
done in metabolic engineering but rarely integrated into
retrosynthesis tools. We therefore developed a RetroPath RL
feature that analyses search trees and suggests potential media
supplements, available from the chemical provider Sigma. We
first extracted supplement information from LASER, as well as
two TPA experimental pathways known from the literature.
Filtering out gene inducers, antibiotics or early precursors, we
obtain a list of 8 curated pathways with supplementation
(available as Supplementary Data S3).27−34 In 5 cases out of 8,
we retrieve the compound that was used for supplementation in
the described experimental pathway. For 2 cases, we did not find
the experimentally described supplement but suggest other
possibilities. In the last case, no relevant chemical was suggested

as a potential supplement. Here, we used availability in the
Sigma-Aldrich catalogue as a criterion on whether a compound
could be an interesting supplement. However, this feature can be
used with any database of interest, for example, with in-house
compounds of a laboratory. One could include criteria such as
capacity to cross membranes, solubility, toxicity, cost or any
other feature of interest and select compounds that are
biologically relevant for their application of interest.

Custom Use of RetroPath RL: Avoid Toxic Intermedi-
ates. We sought to make our tool as modular and flexible as
possible, therefore allowing expert users to input their
knowledge. We showcase this by implementing a toxicity
score to bias the search away from toxic compounds.6,35 This
toxicity score is negative (between 0 and −10 in our training
data set) for toxic compounds and set to 0 otherwise. The
strength of using bias in MCTS is that it favors preferred routes
(here, avoiding toxic intermediates) but can still find results if

Figure 4. Example of bioretrosynthetic scope obtained from RetroPath RL for mesaconic acid. Dead end compounds have been removed, pathways
lying in the scope are depicted with distinct colors. Compounds are represented by their chemical structures and reactions by their EC numbers or their
rule ID of no EC is known. Mesaconic acid (at the top) and sink compounds (precursor metabolites) are surrounded by a solid line, while
intermediates are surrounded by a dashed line. Only the pathways predicted up to 3 steps are shown. Compound names: mesaconic acid (A), 3-
methylmalic acid (B), citramalic acid (C), 3-methylaspartic acid (D), propanoyl-CoA (E), glyoxylate (F), citramalyl-CoA (G), acetate (H), succinate
(I), pyruvate (J), acetyl-CoA (K), glutamate (L).
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those preferred routes are not successful, in contrary to other
algorithms that would exclude those intermediates altogether.
While implementing this feature did not change our results on
the golden data set (i.e., the experimental pathway was identified
for the same compounds), the order as well as the total number
of returned pathways was impacted (Supplementary Table S3).
While we tested it with toxicity, biasing the search could also

be used to encourage pathways to be found from a set of
privileged metabolites (core metabolism), by cost, availability in
the cell or any other metric the advanced user wishes to use,
making MCTS ideal to incorporate biological knowledge into
retrosynthetic search.

■ CONCLUSION AND REMARKS
We showcase here the use of Monte Carlo Tree Search for
bioretrosynthesis, and provide an implementation as RetroPath
RL, an open-source Python package available on GitHub. While
MCTS has already been implemented for chemical synthesis,17

RetroPath RL is to our knowledge the first application of this
algorithm to biochemistry and metabolic engineering. It is a
versatile, modular command line tool, build for metabolic
engineers, that takes as input a compound of interest, a microbial
strain as sink (i.e., the list of available precursor metabolites) and
a set of reaction rules.
While RetroPath RL can take as input any set of chemical rules

in encoded into the SMARTS linear notation, giving great
freedom to users to use reactions from their pathways or
microbial strain of expertise, the tests presented in this article use
rules from our RetroRules database.21 RetroRules was built
using a data-driven approach showcased in earlier version of
RetroPath,11 allowing promiscuity encoding. Using both
reaction rules at various diameters and chemical similarity

scoring, we can tune the allowed promiscuity within our search,
which is an advantage over building reaction rules from EC
numbers as is commonly done in metabolic engineering.
Another advantage of a data-driven approach is that it is
bound to get more precise and information-rich as metabolic
databases expand.
We validated RetroPath RL by verifying on a manually

curated data set that a literature-described pathway could be
found for 20 different compounds. The fact that the
experimental pathways were found for 75% of compounds
using default settings and 95% of the time using more tolerant
ones, with much better results when using biochemically guided
search, confirms the ability of RetroPath RL to suggest
experimentally viable pathways for metabolic engineers on
numerous compounds.
Moreover, following the standards we set in our previous

paper,11 we tested RetroPath RL on a larger data set and found a
pathway for 83.6% of compounds that were results of successful
metabolic engineering projects. These results confirm that
RetroPath RL generalizes well to metabolic engineering
compounds outside the manually curated golden data set.
Moreover, RetroPath RL suggests more pathways (median
number of 11.5 versus 4.5), giving metabolic engineers more
suggestions with which to exercise their expertise.
While a restricted number of microbial strains was provided

with RetroPath RL, the user can provide his own strain or
supplement the media with a given compound of interest. For
example, when supplementing xylene to the microbial strain an
experimentally described pathway to TPA27 is found, and when
adding thebaine to the media, a pathway for morphine
production is also found.31 A novel feature that should be
welcomed by themetabolic engineering community is the ability

Figure 5. Impact of scoring scheme on retrieval performance of RetroPath RL. We compared results between using a biological score cutoff (A), a
chemical score cutoff (B), and a biochemical score cutoff (C) varying between 0 and 0.9. In (D) we compared results between guiding the search based
on the Classical UCT formula, a formula guided by biological scoring, chemical scoring, or biochemical scoring. One pathway foundmeans that at least
one pathway has been predicted. Experimental pathway found means that the experimental pathway is from among the predicted pathways.
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of RetroPath RL to suggest media supplements to complement
the enzymatic synthesis plan. This feature, tested on 8 pathways,
found the experimentally described supplement for 5 of them,
and also suggests other supplements to test.
We showcase RetroPath RL’s modularity by biasing the

search toward less toxic intermediates, and also provide expert
users 2 strategies to speed-up the retrosynthetic search, either by
storing results in a database (Supplementary Note S3) or
extending a search from previously run search trees (Supple-
mentary Note S4). This possibility can be particularly
interesting for users that wish to find alternative pathways
after the results from a first search.
Another feature of interest is the ability to use RetroPath RL

for biosensor design, as we also demonstrated with our
previously developed tools.36,37 This can be used in conjunction
with a data set of detectable compounds38 to allow for design of
Sensing Enabling Metabolic Pathways.
Despite the advantages presented above, RetroPath RL still

presents some limits, mostly related to pathway ranking. The
authors of this article believemodular design, with a downstream
analysis of selected pathways, to be a more appropriate course of
action than ranking within the tool: so many genome or growth
conditions modifications can increase a pathway yield that
including all ranking schemes into one to come up with a “best”
pathway neglects both metabolic engineers’ expertise and years
of lessons from the industry. However, most developers present
all integrated tools that perform pathway search and ranking
together. Ranking schemes in such tools can involve accounting
for enzyme integration into the microbial strain, kinetics,
toxicity, carried flux, thermodynamics or preferred cofactor
usage.10,13 Our approach provides two advantages over
integrated tools. First, ranking the pathways separately allows
for a muchmoremodular integration, and the ability to integrate
new ideas into ranking muchmore easily. Moreover, as shown in
the custom use section, for advanced users attached to using
these schemes, it is possible to integrate them easily given
RetroPath RL’s modular code and the ability of theMonte Carlo
Tree Search algorithm to bias the search toward or away from
properties of interest.
While stereochemistry has been described as one of nature’s

most interesting advantages compared to the traditional
chemical industry,39 it is not used in results presented here,
mainly due to current technical limitations to the way
stereochemistry is handled by the cheminformatics packages
we used at themoment. However, since our formalism uses rules
SMARTS which are stereoaware,40 and our standardization
schemes can leave or remove stereochemistry, users wishing to
use stereochemistry in RetroPath RL can do so.
Another major advance that could be included in RetroPath

RL would be to guide reaction selection steps through learned
values instead of similarity. For example, this was implemented
in ref 17 or ref 41. However, the authors learned values from
Reaxys,42 which contains 12.4 million single-step reactions
(compared to around 80 000 in MetaNetX, including reactions
without chemical structures43). Therefore, using learned values
in bioretrosynthesis seems out of reach for the moment, but
could become available in the coming years due to the intense
curation efforts under way in the community. Moreover, those
learned values in bioretrosynthesis would have to be strain-
dependent, as an intermediate compound’s value for biore-
trosynthesis depends highly on the strain of interest.
In conclusion, we present here a highly modular tool using

one of the latest tree search algorithms for bioretrosynthesis.

This tool is modular enough for expert users to input their expert
knowledge and has been thoroughly tested on data sets of
interest to the community.

■ MATERIALS AND METHODS
All chemical operations were performed using RDKit release
2019.03.1.0 and Python 3.6.

Compound Standardization. All compounds were stand-
ardized using the following steps:

• Sanitizing chemical depictions using RDKit’s SanitizeMol
method.

• Removing isotope.
• Neutralizing charges.
• Removing stereo.
• Converting back and forth to InChI44 to ensure

tautomerism consistency.

Reaction Rule Encoding. Our reaction rules are generated
as presented in our RetroRules database.21 Briefly, we extracted
known biochemical reactions from the MetaNetX43 database
version 3.1 and filtered out incomplete reactions. We identified
the reaction centers based on atom−atom mappings we
performed using the Reaction Decoder software45 (version
2.1.0). We decomposed multisubstrates reactions into mono-
substrate components by considering one substrate per
component and only the subset of products that share at least
one atom with the substrate. Monocomponents involving a
typical cofactor (such as CO2, ATP, NADH, ...) as substrate
were excluded. Finally, each monocomponent reaction is
encoded into a collection of reaction rules using the SMARTS40

formalism for a diameter ranging from 2 to 16 around the
reaction center.
The main difference with the RetroRules procedure

aforementioned is that we use implicit hydrogen notation in
the reaction rules instead of explicit, which allows a much faster
computation of standardization of compounds and reaction rule
application through RDKit.
To validate the reaction rules, we checked that applying the

reaction rules on the substrates used as templates produce the
products described in the template reactions. The success rates
range from 99.4% for reaction rules at diameter 2 to 99.8% for
those at diameter 16. We also performed a cross-radius
consistency check by ensuring that sets of products produced
by large diameter reaction rules (e.g., reaction rules generated
with a diameter of 10) are always subsets of products produced
by reaction rules at any smaller diameter (e.g., reaction rules for
diameter 8), which show a success rate of 99.3%. Only reaction
rules passing successfully both procedures have been retained
and used, which represent almost 146 000 distinct reaction rules
(available for download on RetroRules Web site, download
page, release rr02) and model more than 18 000 biochemical
reactions in both directions.

Branching Factor Calculation. We generated what we
called the extended metabolic space (EMS) at 1 step, i.e., the
metabolic space that can be reached by applying our reaction
rules once on all compounds of MetaNetX43 being used as a
template for generating at least one reaction rule. We filtered out
substrates having a molecular weight greater than 1 kDa. We set
a timeout cutoff of 1 s on rule application. We then analyzed the
results presented in Table 1 and Supplementary Table S1 using
the NetworkX python library.46

Chemical Score Calculation. After compound stand-
ardization, we calculate a 1024 binary Morgan fingerprints
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vector using the RDKit method GetMorganFingerprintAsBit-
Vect at diameter 4.
For substrate score, the query substrate is compared to all

native substrates a rule was learned on using Tanimoto
score,47,48 and the maximum score is kept.
For products and substrate scoring, the procedure is as

follows.
For each native (n_sub, n_products) couple:

• Calculate Tanimoto of query and native substrate.
• Generate all combinations of native and query products

(below 1000 to avoid a combinatorial explosion. The
number of combinations is n! where n is the number of
products generated by the rule application).

• For each combination, calculate the geometric mean of
the Tanimoto scores of products.

• Keep the highest combination score.
• The score of this native combination is the product of the

substrate score and the highest combination score.

The score of the rule is the highest score of all native
substrates and products the rule was generated from.
Rules generating a different number of products from the

template receive a score of −1.
Biological Score Calculation. A penalty is calculated as

presented in our RetroPath 2.0 paper.11 Briefly, we clustered
reaction rules according to the EC number annotations
inherited from the template reactions. Independently, we
clustered enzyme sequences collected from UniProt49 (release
2019_04) according to sequence similarity using the cd-hit
software50 (version 4.6.8). We establish the sequences to
reaction rules associations based on Rhea51 (v98), MetaCyc52

(v21.5), and Reactome53 (v66) cross-links. The penalty score
was then computed as

= npenalty (rule) log ( )score 10 rule

with nrule the number of distinct clusters that contains sequences
associated with the rule.
The final biological score was obtained after normalization of

this penalty so that it becomes a score comprised between 0 and
1 using the functions below. We chose the regularization
parameter so that half of the rules would have a score above 0.5
and the other half below.

α
=

+ ·
score (rule)

1
1 weighted (rule)bio

penalty

with

=weighted (rule)
penalty (rule)

radius(rule)penalty
score

and

α = 1
median(weighted )penalty

Biochemical Score Calculation. The biochemical score
was computed as the product of the chemical and biological
scores:

= ×score (rule) score (rule) score (rule)biochem bio chem

Sinks Construction. Except stated, sink compoundsi.e.,
the list of available precursor metaboliteshave been extracted
from genome-scale metabolic models by only collecting the

chemicals that lie in the cytosol compartment. In addition, we
filtered out “dead-end” compounds, i.e., compounds that cannot
be produced by any reactions in a steady-state metabolic model,
that we detected by performing a Flux Variability Analysis using
the COBRApy package54 (v0.15.3).
Chemical structures have been obtained using cross-links

from the models to metabolic databases. In case no cross-link or
not any valid structure was found, the PubChem55 database was
examined using compound names as query. Finally, all chemical
structures were standardized as described in the Compound
Standardization section.

Available Sinks. The available sinks provided with our
software are iML1515,56 iJO1366,57 and core E. coli metabo-
lism,58 as well as Bacillus subtilis iYO844 model59 and our set of
detectable compounds for biosensor design.38 The genome scale
models were obtained from the BiGG Models database.60 By
default, we used sinks from the iML1515 model.

RetroPath 2.0 Configuration. For all tests made with
RetroPath 2.0, we perform all executions on a recent
workstation. We use the sink extracted from the iML1515
model, and we set the maximum pathway length to 5, the
maximum number of structures to keep for next iteration to
1000, and a 3 h per execution time budget. We then use the
rp2paths software available on GitHub at https://github.com/
brsynth/rp2paths to extract the pathways from RetroPath 2.0
output.11

Monte Carlo Tree Search Implementation. The aim of
Markov decision processes is to model sequential decision
processes of an agent in an environment.61 Its most notable
components are states (representing positions in a game) and
actions (allowed transformations from the state).
In RetroPath RL, following the method developed by ref 17,

we consider states to be a set of molecules. The initial state
contains only the target compound one desires to produce.
Actions are transformations of any molecule of the state that do
not transform the compound into itself nor produce a nonsink
compound that has already been produced before in the
synthesis plan so as to avoid loop searches.
A state is considered terminal if all compounds are in the sink,

if nomove can be applied to this state or if the maximum allowed
depth has been reached.
Monte Carlo Tree Search is a reinforcement learning

approach that builds a search tree and stochastically explores
search space to bias search toward most promising regions of
combinatorial space, following steps presented in Figure 2B and
detailed below.

Selection. Starting from the root node, the best child nodes
according to the selection policy are iteratively chosen until a leaf
node is reached. The formula we used is

= + · · ·

+

Value
Node
Node

UCTK score score

Parent
1 Node

score

visits
chem bio

visits

visits

where Nodescore is the cumulative score from rollouts, Nodevisits
is the number of visits to this node, UCTK is the UCT (Upper
Confidence Trees) constant used (balances between exploita-
tion and exploration), chemical and biological scores are the
scores of the move leading to this node, and Parentvisits is the
number of visits of this Node’s parents.
Other policies have been developed, notably with only

chemical, biological score, or no scoring. In our implementation,
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grandchildren of a node can only be explored if all his children
have had at least minimal_visits number of visits. This allows
mandatory rollout on different branches at least once to favor
exploration.
The Classical UCT formula (without guidance) is the

following:

= + ·
+

Value
Node
Node

UCTK
Parent

1 Node
score

visits

visits

visits

Expansion. For each compound that is not in the sink, its n
best moves are identified and stored (with n the maximal
number of children allowed for the node). Then, the n best
moves overall on the state are selected and children created
iteratively (one at the first visit of the node, the next at the next
visit and so on) for each of these moves and a rollout is
performed.
Rollout. Rollout is an iterative procedure that starts by

checking the status of the state. If it is terminal, a reward (or
penalty) is returned according to the rewarding policy. If it is not
terminal, a transformation is randomly sampled from available
transformations and the process is repeated. This is performed
until a maximum number of rollout steps or the maximal depth
of the tree is reached. The function for random sampling used
throughout this study gives weight chemical × biological score
to moves, therefore giving more probability of being sampled to
higher scoring moves according to our scoring scheme.
Rewarding Policy. A state is rewarded as follows:

• Receives a penalty of −1 when no compound is solved.
• Receives a bonus of 5 when the state is fully solved.
• Receives a score of number_found/total_number when

only a fraction of molecules in the state are solved.

Update. The node and its parents update their value and
node counts according to the results obtained from the above
rewarding scheme after rollout.
Returning Complete Pathways. Each time a full pathway

is found during the tree expansion, the pathway is returned, and
an additional bonus of 10 is received by the node, to allow for
biasing toward similar successful pathways. At the end of the
search, the most visited pathway is returned (“best”), and all
pathways are returned ranked in order of decreasing biochemical
score.
Golden Data Set Construction. In order to perform

golden data set curation, we focused on articles where pathways
were explicitly described (i.e., no missing steps, and available
intermediate compounds). We retrieved compound structures
in PubChem55 and EC numbers from Brenda62 based on
enzyme name as given in the article. We selected pathways of
strictly more than 1 step. We then verified for each step that we
had chemical rules available in our RetroRules21 database to
encode the described transformations. This ensures a fair
comparison between tools using our publicly available reaction
rules, in order to evaluate separately retrosynthesis tools and the
underlying chemical rules. The detailed list with references is
available as Supplementary Table S4, and the pathways as
Supplementary Data S1.
Experimental Pathway Comparison. In order to compare

the pathways found by RetroPath 2.0 or RL and the
experimental pathways described in the literature, we have two
types of information: compound identity and EC number
identity. We consider the reaction EC number to be equal if it is
identical up to 3 digits (1.1.1.x is identical to 1.1.1.y). Since
spontaneous reactions do not have an EC number, we used

compound identity for comparison, and EC number as
additional information.

LASER Retrieval and Metabolic Engineering Comple-
tion. We build the LASER data set by parsing target molecule
and microbial strain information from the LASER database
published by Winkler et al. which provides a curated list of more
than 600 successfully implemented metabolic designs.25 When
available, we store the chemical structure provided by MetaCyc
(v2RL), otherwise we query the PubChem database based on
target compound names. We augmented this list with target
compounds reported in the Metabolic Engineering journal in
2016 (volumes 33−38) and published in RetroPath 2.0.11 All
chemical structures have been standardized using the procedure
described in the Compound Standardization section. The final
data set used in the present paper contains 211 unique structures
that are provided as Supplementary Data S2.

Extracting Supplements from LASER. LASER provides a
“Media” line that contains addition to the media, extracted using
Natural Language Processing. This can include antibiotics,
promoter inducers or supplements of interest required to build
the pathway. We removed all compounds that did not concern
pathway supplements and removed early precursor supplemen-
tation. Structures were obtained from PubChem. We obtain a
list of only 6 pathways satisfying these requirements, and 8 when
we also add two pathways for TPA from literature.27 This
list27−34 is available as Supplementary Data S4.

Supplement Finder Feature. The Supplement finder
functions as follows:

• Load search tree in memory.
• Explore all nodes and keep compound structures that

complete of a chemical state (i.e., all other compounds of
the state are solved).

• Compounds that allow for completion of more than N
states (which would complement N pathways) are kept.
Here N = 1: any compound that can complement a
pathway is kept.

• Compounds are filtered according to presence in a
Database of interest. Here, we filtered according to
presence in the Sigma catalogue.

• We keep the N best suggestions (according to number of
pathways that are completed). Here, we returned up to 20
potential supplements.

• All completed pathways are extracted for future analysis.

Toxicity Implementation. We used data from EcoliTox35

and XTMS6 to build a QSAR model (using as input features
1024 binary Morgan fingerprints vector calculated with the
RDKit methodGetMorganFingerprintAsBitVect at diameter 4),
predicting log(IC50) of the compounds. We train our model
using scikit-learn63 (version 0.19.1). The model is a multilayer
perceptron trained with the default parameters from scikit-learn
except the following parameters: maximum iteration of 20000,
adaptive learning rate, adam solver, early stopping and the
following layers: (10, 100,100, 20). This model has a Leave-
One-Out (LOO) score of 0.81. In prediction mode, toxicity was
used only if the predicted log(IC50) ≤ 0. The modified UCT
function that was used is

= +
+

+

· · ·
+

Value
Node
Node

bias
toxicity

1 Node
UCTK

score score
Parent

1 Node

k
score

visits visits

chem bio
visits

visits
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Hardware. We ran our tests on 2 calculation clusters and 1
personal computer. Tests involving using the NoSQL Database
and media supplementation were run on a desktop computer
with the following characteristics: CPU is Intel Xeon W-2145
CPU @ 3.7 GHz and 32 G of RAM.
Tests for the golden data set evaluation were performed on

the Migale (https://migale.inra.fr) cluster (2.0 to 2.4 GHz
CPUs). Allocated resources per job were set to 1 vCPU and 20
GB. Tests for the LASER database evaluation were run on the
IFB cluster (http://taskforce-nncr.gitlab.cluster.france-
bioinformatique.fr/doc/cluster-desc/) (2.3 GHz CPUs). Allo-
cated resources per job were set to 1 vCPU and 40 GB. Cluster
tests were run using snakemake64 5.4.0.
Code and Data Availability. RetroPath RL is available at

https://github.com/brsynth/RetroPathRL under a MIT li-
cense.
Reaction rules are available at https://retrorules.org/dl.
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Supplementary Table 1: Average number of rules that apply to a compound according to the 
diameter at which the rule is used. This shows that more promiscuous rules (at lower 
diameters) generate a bigger combinatorial space. 

Diameter 
used

2 4 6 8 10 12 14 16

Average 
number of 
rules that 
apply

797 227 73 35 20 14 11 8
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Supplementary Table 2: Detailed configuration data for RetroPath RL runs on validation 
datasets.

Parameter 
name

Golden Default Golden Rescue Laser Default Laser Rescue

Itermax 10000 10000 50000 10000

Expansion width 10 15 10 10

Time budget (s) 10800 when 
comparing to 
RP2, 14400 
otherwise

10800 when 
comparing to 
RP2, 14400 
otherwise

10800 10800

Max depth 7 7 10 7

UCT Policy Biochemical Biochemical Biochemical Biochemical

UCTK 2 2 2 2

Rollout Policy Uniform on 
biochemical 
score

Uniform on 
biochemical 
score

Uniform on 
biochemical 
score

Uniform on 
biochemical 
score

Max rollout 2 2 2 2

Chemical 
scoring

Substrate and 
product

Substrate and 
product

Substrate and 
product

Substrate and 
product

Virtual visits 0 0 0 0

Rule diameters 6, 10, 16 6, 10, 16 6, 10, 16 2, 6, 10, 16

Biological score 
cut-off

0.3 0.15 0.3 0

Substrate score 
cut-off

0.3 0.15 0.3 0

Chemical score 
cut-off

0.3 0.15 0.3 0

Minimal visits 
count

1 1 1 1

Fire timeout (s) 1 1 1 1

Penalty -1 -1 -1 -1

Reward 5 5 5 5

Full pathway 
reward

10 10 10 10

Seed 42 42 42 42



Supplementary Table 3: Toxicity biased results. Comparing results between the default 
configuration and the one using the toxicity score to bias the search. Total pathway number is 
the total number of pathways found with the given time and iteration budget. The iteration and 
rank for the experimental pathway refer to the pathway described in the golden dataset.

Compound Total pathway 
number. 
default - toxicity

Iteration for finding 
the experimental 
pathway.
default - toxicity

Rank of 
experimental 
pathway.
default - toxicity

3-methyl-1-butanol 1 - 1 4 - 4 1 - 1 

1,4-Butanediol NA - NA NA - NA NA - NA

2-amino-1,3-
propanediol

1 - 1 1 - 1 1 - 1

2,5-DHBA 34 - 31 88 - 97 4 - 4

benzyl alcohol 13 - 22 1815 - 2213 4 - 8

caroten 4 - 4 6508 - 6443 1 - 1

cis,cis muconate 11 - 11 159 - 176 6 - 6

glutaric acid 61 - 74 1114 - 571 13 - 7

lycopene 106 - 103 101 - 96 1 - 1

mesaconic acid 14 - 14 9 - 9 1 - 1

naringenin 38 - 40 408 - 1011 1 - 9

N-methylpyrrolinium 9 - 10 NA - NA NA - NA

p-hydroxystyrene 59 - 61 34 - 33 1 - 1

piceatannol 34 - 38 8581 - 8996 32 - 36

pinocembrin 25 - 25 66 - 55 2 - 2

protopanaxadiol 1 - 2 NA - NA NA - NA

styrene 43 - 45 14 - 13 2 - 2

TPA 9 - 10 NA - NA NA - NA

vanillin 34 - 36 169 - 171 4 - 4

violacein 3 - 3 158 - 158 3 - 3



Supplementary Table 4: Golden dataset. This dataset contains the compounds, structures 
and references used for experimental pathway analysis presented in Results - golden set. 

Name InChI Reference

3-methyl-1-butanol InChI=1S/C5H12O/c1-5(2)3-4-6/h5-6H,3-
4H2,1-2H3

1

1,4-Butanediol InChI=1S/C4H10O2/c5-3-1-2-4-6/h5-6H,1-
4H2

2, 3 

2-amino-1,3-
propanediol

InChI=1S/C3H9NO2/c4-3(1-5)2-6/h3,5-
6H,1-2,4H2

4 

2,5-DHBA InChI=1S/C7H6O4/c8-4-1-2-6(9)5(3-
4)7(10)11/h1-3,8-9H,(H,10,11)

5 

benzyl alcohol InChI=1S/C7H8O/c8-6-7-4-2-1-3-5-7/h1-
5,8H,6H2

6 

caroten InChI=1S/C40H56/c1-31(19-13-21-
33(3)25-27-37-35(5)23-15-29-
39(37,7)8)17-11-12-18-32(2)20-14-22-
34(4)26-28-38-36(6)24-16-30-
40(38,9)10/h11-14,17-22,25-28H,15-16,23-
24,29-30H2,1-10H3/b12-11+,19-13+,20-
14+,27-25+,28-26+,31-17+,32-18+,33-
21+,34-22+

7

cis,cis muconate InChI=1S/C6H6O4/c7-5(8)3-1-2-4-
6(9)10/h1-4H,(H,7,8)(H,9,10)/p-2/b3-1-,4-2-

8 

glutaric acid InChI=1S/C5H8O4/c6-4(7)2-1-3-5(8)9/h1-
3H2,(H,6,7)(H,8,9)

9

lycopene InChI=1S/C40H56/c1-33(2)19-13-23-
37(7)27-17-31-39(9)29-15-25-35(5)21-11-
12-22-36(6)26-16-30-40(10)32-18-28-
38(8)24-14-20-34(3)4/h11-12,15-22,25-
32H,13-14,23-24H2,1-10H3/b12-11+,25-
15+,26-16+,31-17+,32-18+,35-21+,36-
22+,37-27+,38-28+,39-29+,40-30+

10 

mesaconic acid InChI=1S/C5H6O4/c1-3(5(8)9)2-
4(6)7/h2H,1H3,(H,6,7)(H,8,9)/b3-2+

11 

naringenin InChI=1S/C15H12O5/c16-9-3-1-8(2-4-
9)13-7-12(19)15-11(18)5-10(17)6-
14(15)20-13/h1-6,13,16-18H,7H2

12

N-methylpyrrolinium InChI=1S/C5H10N/c1-6-4-2-3-5-6/h4H,2-
3,5H2,1H3/q+1

13

p-hydroxystyrene InChI=1S/C8H8O/c1-2-7-3-5-8(9)6-4-7/h2-
6,9H,1H2

14 

https://paperpile.com/c/zCcbrz/rwCZv
https://paperpile.com/c/zCcbrz/PbPOK
https://paperpile.com/c/zCcbrz/0VzxE
https://paperpile.com/c/zCcbrz/3L28c
https://paperpile.com/c/zCcbrz/qoQA4


piceatannol InChI=1S/C14H12O4/c15-11-5-10(6-
12(16)8-11)2-1-9-3-4-13(17)14(18)7-9/h1-
8,15-18H/b2-1+

15

pinocembrin InChI=1S/C15H12O4/c16-10-6-11(17)15-
12(18)8-13(19-14(15)7-10)9-4-2-1-3-5-
9/h1-7,13,16-17H,8H2/t13-/m0/s1

16

protopanaxadiol InChI=1S/C30H52O3/c1-19(2)10-9-14-
30(8,33)20-11-16-29(7)25(20)21(31)18-23-
27(5)15-13-24(32)26(3,4)22(27)12-17-
28(23,29)6/h10,20-25,31-33H,9,11-
18H2,1-8H3/t20-,21+,22-,23+,24-,25-,27-
,28+,29+,30+/m0/s1

17

styrene InChI=1S/C8H8/c1-2-8-6-4-3-5-7-8/h2-
7H,1H2

18

TPA InChI=1S/C8H6O4/c9-7(10)5-1-2-6(4-3-
5)8(11)12/h1-4H,(H,9,10)(H,11,12)

19

vanillin InChI=1S/C8H8O3/c1-11-8-4-6(5-9)2-3-
7(8)10/h2-5,10H,1H3

20

violacein InChI=1S/C20H13N3O3/c24-10-5-6-15-
12(7-10)14(9-21-15)17-8-13(19(25)23-
17)18-11-3-1-2-4-16(11)22-20(18)26/h1-
9,21,24H,(H,22,26)(H,23,25)/b18-13+

21, 22

https://paperpile.com/c/zCcbrz/RTjyy


Supplementary Note 1 : Parameter Role and Effects

The aim of this supplementary note is to detail the different parameters available in RP3 and 
their roles and effects.

A number of methods and ideas were taken or inspired from the following master thesis, which 
uses Monte Carlo Tree Search against a computer game23.

Rule selection parameters

Biological score

As described in the main text, this score characterises our confidence that a sequence exists 
to catalyse the reaction of interest. It is normalised between 0 and 1. Using a cut-off on this 
score removes less trustworthy reaction rules. We see in Supplementary Figure 1 that results 
do not vary between using a cut-off from 0 to 0.3, and we start losing pathways of interest 
when the cut-off is superior or equal to 0.5. A cut-off of 0.3 therefore seems to be a good trade-
off between confidence in the existence of a sequence and obtaining enough retrosynthesis 
results.

Supplementary Figure 1: Impact of biological score cut-off on retrieval performance of 
RetroPath RL. We compared results between using a biological score cut-off varying between 0 and 
0.9. One pathway found means that at least one pathway has been predicted. Experimental pathway 
found means that the experimental pathway is from amongst the predicted pathways. Also presented 
as Figure 5A.



Chemical score

As described in the main text, this score characterizes our confidence that the reaction rule 
learned on a substrate and product from a database of interest can truly be applied to a new 
substrate, based on similarity between substrates and products of the native reaction versus 
the query reaction. We can see in Supplementary Figure 2  that allowing reactions that are 
too different leads the tree to explore too diverse pathways, while being too conservative leads 
to loss of useful reactions. 0.3 therefore seems to be a good cut-off between confidence that 
the reaction rule does apply to the compound and allowing exploration of the metabolic space.

Supplementary Figure 2: Impact of chemical score cut-off on retrieval performance of 
RetroPath RL. We compared results between using a chemical score cut-off varying between 0 and 
0.9. One pathway found means that at least one pathway has been predicted. Experimental pathway 
found means that the experimental pathway is from amongst the predicted pathways. Also presented 
as Figure 5B.

Biological and chemical score

Here we varied both the chemical and biological scores, set at the same value. We can see 
in Supplementary Figure 3, as in Supplementary Figures 1 and 2, that cut-offs of 0.3 provide 
the best trade-off between exploration and confidence.



Supplementary Figure 3: Impact of biochemical score cut-off on retrieval performance 
of RetroPath RL. We compared results between using chemical score cut-off and biological score 
cut-off (set at the same value) varying between 0 and 0.9. One pathway found means that at least one 
pathway has been predicted. Experimental pathway found means that the experimental pathway is from 
amongst the predicted pathways. Also presented as Figure 5C.

UCT policy

While these policies are used to tune the exploration/exploitation balance, we modified it to 
guide the search and see the importance of that guidance on finding results. We can see in 
Figure 5D and Supplementary Figure 4 the best UCT policy to guide our exploration of the 
metabolic space is our formula including the biochemical score.

Supplementary Figure 4: Impact of guiding scheme on retrieval performance of 
RetroPath RL. We compared results between guiding the search based on the Classical UCT 
formula, a formula guided by Biological scoring, Chemical scoring or Biochemical scoring. One pathway 



found means that at least one pathway has been predicted. Experimental pathway found means that 
the experimental pathway is from amongst the predicted pathways. Also presented as Figure 5D.

Diameters

Diameters characterize the degree of promiscuity we allow in a reaction rule: higher diameters 
are more specific, while lower diameters are more promiscuous. We found a good trade-off 
was to allow rules at different levels of promiscuity, using diameters of 6, 10 and 16 (low, 
medium and high specificity), as shown in Supplementary Figure 5.

Supplementary Figure 5: Impact of allowed rule diameters on retrieval performance of 
RetroPath RL. We compared results between using different diameter sets. One pathway found 
means that at least one pathway has been predicted. Experimental pathway found means that the 
experimental pathway is from amongst the predicted pathways.

Exploration parameter

Expansion width

It is the number of children a node is allowed to have. We found 10 and 15 provided a good 
trade-off between exploration and exploitation, as shown in Supplementary Figure 6. We 
usually tested with 10 children and expanded to 15 for failed compounds.



Supplementary Figure 6: Impact of expansion width on retrieval performance of 
RetroPath RL. We compared results between using different expansion width (number of allowed 
children per node). One pathway found means that at least one pathway has been predicted. 
Experimental pathway found means that the experimental pathway is from amongst the predicted 
pathways.

Minimal visit counts

In our implementation, grand-children of a node can only be explored if all his children have 
had at least minimal_visits visits, where this value was set at 1 in the default settings. This 
allows mandatory rollout on different branches at least once to favour exploration. We can see 
from Supplementary Figure 7 that results are similar when not forcing this exploration with a 
parameter set to 0.

Supplementary Figure 7: Impact of minimal visit counts on retrieval performance of 
RetroPath RL. We compared results between using different minimal visit count values. One pathway 



found means that at least one pathway has been predicted. Experimental pathway found means that 
the experimental pathway is from amongst the predicted pathways.

Rollout

This is the rollout depth: the number of reactions performed before analysing the state and 
returning the state’s reward or penalty. Supplementary Figure 8 shows that rollout depth 
does not impact our capacity of finding experimental results on the golden dataset. However, 
unshown results (considering the iteration at which those results are found) suggest best 
rollout values are either 2 or 3.

Supplementary Figure 8: Impact of rollout depth on retrieval performance of RetroPath 
RL. We compared results between using different rollout depths. One pathway found means that at 
least one pathway has been predicted. Experimental pathway found means that the experimental 
pathway is from amongst the predicted pathways.

UCTK

This constant balances the trade-off between exploration and exploitation in the UCT formula. 
We can see in Supplementary Figure 9 that the value allowing the best retrieval rate from 
the golden dataset is a constant of 2.



Supplementary Figure 9: Impact of exploration constant value on retrieval performance 
of RetroPath RL. We compared results between using different exploration constant values (UCTK). 
One pathway found means that at least one pathway has been predicted. Experimental pathway found 
means that the experimental pathway is from amongst the predicted pathways.

Virtual visits

This is the number of visits a new node starts with. The concept of virtual visits is that giving 
an initial value to a node will return more stable rollout results as they will be smoothed by a 
number less close to 0 rather than being very stochastic at low values. We can see this 
strategy did not give better results in our MCTS for bio-retrosynthesis in Supplementary 
Figure 10.

Supplementary Figure 10: Impact of virtual visits on retrieval performance of RetroPath 
RL. We compared results between using different virtual visits numbers. One pathway found means 
that at least one pathway has been predicted. Experimental pathway found means that the experimental 
pathway is from amongst the predicted pathways.



Solution rewarding

Penalty

This is the value returned when no compound of the state is within the chassis (including at 
the end of rollout). We can see in Supplementary Figure 11 that increasing penalty does not 
yield better results in our case, and a value of -1 penalises enough the unsuccessful rollout 
results.

Supplementary Figure 11: Impact of penalty on retrieval performance of RetroPath RL. 
We compared results between using different penalties. One pathway found means that at least one 
pathway has been predicted. Experimental pathway found means that the experimental pathway is from 
amongst the predicted pathways.

Reward

Reward is the value returned when all compounds of the state are solved, to encourage 
exploration of the same area of the Tree. We can see from Supplementary Figure 12 that a 
value of 5 provides a good trade-off between exploration of other areas of the tree and 
exploitation of promising regions.



Supplementary Figure 12: Impact of reward on retrieval performance of RetroPath RL. 
We compared results between using different rewards. One pathway found means that at least one 
pathway has been predicted. Experimental pathway found means that the experimental pathway is from 
amongst the predicted pathways.

Other parameters - for other applications

Heavy saving

Saves search Tree state during the search instead of only at the end. Used to analyse Search 
evolution.

Stop at first result

The search stops once a single result is found.

Fire time-out and standardisation time-out

Timeouts on rule application on a compound. 

Organism name

Choose another organism from our predefined list of sinks.

Complementary sink

Adding compounds to the sink as supplements. Can also be used to provide an entirely new 
sink following the required format.



Other parameters - exploratory

Remark: no detailed comparison was performed in this article on those parameters, contrary 
to the parameters presented above.

k_RAVE

For balancing of Rapid Action Value Estimation. The idea is to provide moves with results from 
rollouts elsewhere in the Tree, to give them an initial value. This will decrease in importance 
as the node itself is visited but provides a fast initial value. 

Bias_k

When using bias (for example towards toxicity), how to weight this value.

Progressive bias

When used in conjunction with bias_k, can give an initial value to a node based on various 
policies: high reward, current state reward, no reward… This also helps initial estimation of 
the node value rather than rely only on costly rollouts. 

Progressive widening

Allow a number of children different according to the number of visits of the node. This is to 
avoid expanding too much in spaces of the tree search that are actually not interesting. 



Supplementary Note 2 :  Detailed golden dataset analysis

Results comparing RetroPath RL and RetroPath 2.0 (run with the same set of rules at 
diameters 6, 10 and 16 and a timeout of 3 hours) on the golden dataset are presented in 
Figure 2. For all compounds, at least one pathway was found with those settings with 
RetroPath RL, while one compound had no pathway with RetroPath 2.0. For 2-amino-1,3-
propanediol, the same core pathway was found, but the identified co-substrate in the first step 
was different (D-alanine predicted instead of D-glutamate for the experimental pathway, the 
main substrate being dihydroxyacetone phosphate). (one step different in Figure 2 - dark 
blue). For four compounds (TPA, N-methylpyrrolinium, 1,4 BDO and protopanaxadiol), the 
experimental pathway was not found for different reasons. For TPA, the described 
experimental pathway in our golden dataset starts from a compound added to the mix, xylene. 
Running our workflow adding this compound to the sink allows us to find the experimental 
pathway (Figure 2 - purple). For protopanaxadiol and N-methylpyrrolinium, we ran the MCTS 
using a different set of parameters, allowing both to explore more reactions (15 instead of 10) 
and more tolerance on the scores (cut-offs of 0.15 instead of 0.3). With those new settings we 
found the experimental pathway for both compounds. For 1,4 BDO, the experimental pathway 
was not found with these new settings either, but a similar pathway (lacking only one 
enzymatic step) was found with the default configuration. It transforms 4-hydroxybutyryl Coa 
into 1,4 BDO without using 4-Hydroxybutyraldehyde, supposedly catalysed by EC number 
(1.2.1.84: alcohol-forming fatty acyl-CoA reductase, without the alcohol dehydrogenase step 
from the literature example). The rest of this pathway is identical to the experimental pathway 
(one step lacking in Figure 2 - light blue).



Supplementary Note 3 : Database speed-up calculations

When running a rule-based retrosynthetic algorithm, the most time and power consuming 
steps are rule application steps which require subgraph matching, as this is an NP hard 
subgraph isomorphism problem. We implemented a NoSQL database that allows for a 
frequent user to store rule application calculations. To allow for a fair comparison between 
runs and algorithms, it was not activated in the results presented previously. However, when 
this feature is active, the results of the first rule application on a compound is stored in the 
database. When the same calculation is encountered in a later run of RetroPath RL, results 
are retrieved from the database. This allows for faster runs of the algorithm and therefore 
larger and deeper exploration within the same time budget. For example, we ran the TPA 
retrosynthetic search 4 times: without the database, and with the database for the first, second 
and third time, allowing 1 hour and 100 000 iterations at each step. We present in 
Supplementary Figure 13 the number of iterations performed in 1 hour, as well as the number 
of pathways found. While we can see the first run with the database is not as efficient as the 
run without it (reaches less iterations and does not find a pathway), we can see that having 
filled the database allows for more exploration of the tree in runs 2 and 3, where in the same 
allocated time more iterations are performed and more pathways found. 

Supplementary Figure 13:  Database sped-up retrosynthetic search. We compared results 
between a classical run where computation is performed on the fly versus storing results in a Database. 
A) Reached iteration is the number of iterations performed by the algorithm in the given timeframe 
(1hour). B) Found pathways is the number of found pathways per run.

Method: Rule calculation cache using a NoSQL database

Rule calculation can be optionally cached into a NoSQL database in order to optimise the 
running time of RetroPath RL. We released this cache system as an optional python package 
named “rp3_cache” that is available on GitHub at https://github.com/brsynth/rp3_cache. 
Technically, the cache system relies on the Mongo DB database (“Mongo DB” n.d.) that is 
embedded into a Docker (“Docker” n.d.) container to make the implementation agnostic of the 
operating system.

https://paperpile.com/c/Q5sLvG/E8hp
https://paperpile.com/c/Q5sLvG/U34e


Supplementary Note 4 : Extending a previous search

Another feature of interest for expert users is the possibility to extend a previously run tree. 
For example, considering the example of protopanaxadiol, the experimental pathway was not 
found with our default settings, but was with more tolerant settings (15 children instead of 10 
and a score cut-off of 0.15 instead of 0.3). However, instead of starting from scratch and losing 
the previously made calculations, it is possible to restart the search from a saved tree, with 
more tolerant settings. The results after running for 4h and 10 000 iterations are presented in 
Supplementary Figure 14. With the default settings, the iteration budget is spent finding only 
1 pathway (not the experimental one). Using more tolerant settings is slower (604 iterations 
are performed in the allotted time) and 2 pathways are found. Extending the original tree allows 
for performing more iterations (786) and finding one more pathway, when compared to starting 
from scratch.

Therefore, we advise a user not satisfied with the results returned by RetroPath RL – be it that 
they are unreasonable given his expert knowledge or that he wants additional alternative 
pathways – to restart the search with smaller scoring cut-offs and more children per node 
(expansion_width parameter). We also advise him to use the database presented in 
Supplementary Note 3 so that he saves chemical results even if he wants to restart the run 
from scratch. 

Supplementary Figure 14:  Extending a previous search. We compared results between 
default settings, more tolerant settings and extending the saved searched. A) Reached iteration is the 
number of iterations performed by the algorithm in the given timeframe (1hour). B) Found pathways is 
the number of found pathways per run.

Method: Tree extension

The tree extension procedure starts with a tree containing search results. If n children were 
allowed in the first run and the extension allows m more children, up to n + m children can be 
found for a given node. Node scores and visit counts are re-initialised, and nodes are first 
flagged for extension then extended when they are first visited in the new search.
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