


























1	

	

Supplementary	Material	

RetroPath2.0:	A	retrosynthesis	workflow	
for	metabolic	engineers	
Baudoin	Delépine,	Thomas	Duigou,	Pablo	Carbonell,	Jean-Loup	Faulon	

	

	

	

TABLE	OF	CONTENT	
Supplementary	Notes	........................................................................................................................................	2	

Supplementary	Note	1:	Reaction	rule	diameter	and	promiscuity	recovery	.................................................	2	

Supplementary	Note	2:	Details	about	multimolecular	rules	........................................................................	4	

Supplementary	Note	3:	Detection	of	biomarkers	through	metabolic	circuits	..............................................	6	

Supplementary	Figures	.....................................................................................................................................	8	

Supplementary	Figure	S1	..............................................................................................................................	8	

Supplementary	Figure	S2	..............................................................................................................................	9	

Supplementary	Figure	S3	............................................................................................................................	10	

Supplementary	Figure	S4	............................................................................................................................	11	

Supplementary	Figure	S5	............................................................................................................................	12	

Supplementary	figure	S6	.............................................................................................................................	13	

Supplementary	Tables	.....................................................................................................................................	14	

Supplementary	Table	S1	.............................................................................................................................	14	

Supplementary	Table	S2	.............................................................................................................................	15	

Supplementary	Data	.......................................................................................................................................	16	

RetroPath2.0	workflow	...............................................................................................................................	16	

Tutorial	&	examples	....................................................................................................................................	16	

Scope	Viewer	..............................................................................................................................................	16	

Set	of	SMARTS	rules	....................................................................................................................................	16	

Set	of	compounds	from	E.	coli	metabolism	................................................................................................	16	

Coverage	of	bioproduction	pathways	.........................................................................................................	16	

Detection	of	biomarkers	through	metabolic	circuits	..................................................................................	17	

RP2paths	open	source	code	for	enumerating	pathways	............................................................................	17	

References	.......................................................................................................................................................	18	

	



2	

	

SUPPLEMENTARY	NOTES	

SUPPLEMENTARY	NOTE	1:	REACTION	RULE	DIAMETER	AND	PROMISCUITY	RECOVERY	

Reaction diameter is a parameter related to enzyme promiscuity. In this note, we investigate the 

ability of the reaction rules to recover promiscuity in function of the diameter. We have performed 

several tests on the reference list of promiscuous enzymes in E. coli (Nam et al., 2012) (see Section 

4.1.3 of the manuscript).  

Test 1. Does using a reaction diameter recover all the known examples of promiscuity for any 

enzymes? 

We looked at the coverage of the rule for the total number of annotated reactions in the 

promiscuous enzymes. As shown in the Figure S6 (red line), at low diameter, the coverage is quite 

high (above 90%), i.e. most of the promiscuous reactions annotated for one gene are recovered by 

the rule. As the diameter increases the coverage decreases to 85%. 

Test 2. What reaction diameter is best?  

In order to answer this question, we should consider the specificity of the rules, i.e. how specific is a 

rule to the enzyme? Figure S6 shows the percentage of rules that appear annotated for a single 

enzyme depending on the diameter. Rules at low diameter are sometimes shared by more than one 

promiscuous enzyme (around 20% of the cases), whereas rules become more specific for one single 

enzyme at higher diameters (d > 6). Taking into account this result and the previous one about 

reaction recovery, we think that a good trade-off between coverage and specificity is for diameters 

between 6 and 8. 

Test 3. If the reaction diameter is too small (too general) are false positives predicted?  

Enumeration of reaction rules can generate a large list of pairs of substrate-products, especially at 

low diameters. Depending on each enzyme sequence and on the experimental conditions, the 

expressed enzyme might display more or less affinity toward the substrates and more or less level of 

efficiency for some of the reactions. Therefore some predicted reactions might be false positives 

depending on the selected enzyme sequence. For instance, phenylalanine ammonia-lyases (PAL) 

EC 4.3.1.24 often also show tyrosine ammonia-lyase (TAL) EC 4.3.1.23 activity. Both of them can 

be encoded through the same reaction rule at low diameters. Whether the selected enzyme will 
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show PAL, TAL or both activities will depend on the chosen enzyme sequence. This is a problem 

that needs to be addressed through enzyme design rather than retrosynthesis. 

Concerning general trends, our previous answer showed that at low diameters there are some rules 

that are shared by more than one enzyme. More precisely, at diameter d = 4, 62% of enzymes had 

reaction rules with no false positives, 74% of enzymes had at most one false positive (a reaction in 

the dataset predicted by the rule that is not annotated for the enzyme). At diameter d = 8, these 

percentages were of 78% and 88%, respectively. These results suggest again that a good choice for 

recovering promiscuity is a diameter around d =8. 
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SUPPLEMENTARY	NOTE	2:	DETAILS	ABOUT	MULTIMOLECULAR	RULES	

There are still many metabolic reactions that are multimolecular, even after removing currency 

cofactors. MetaNetX version 2.0 (110,000 compounds after canonicalization and 31,527 reactions) 

comprise 42% of reactions that remains multimolecular after removing currency cofactors. 

Metabolic databases such as MetaCyc or KEGG do identify main substrates and products, albeit not 

in all cases, and 29% of reactions in MetaCyc have multiple main substrates and 27% have multiple 

main product and 15% have both. A good example of such reactions are transaminases (EC class 

2.6.1). There are 178 reactions in that class in MetaCyc, most of them involving two substrates and 

two products. Cofactors in 2.6.1 reactions are glutamate and oxoglutarate in 51% of the cases, but 

other cofactors are found such as oxaloacetate, 2-oxobutanoate, oxoglutaramate, oxooctonal, 

glyoxylate, pyruvate, glutamine, oxosuccinamate, or butamine. Clearly reactions of class 2.6.1 

admit multiple substrates and products and they all vary from one reaction to another, thus these 

reactions cannot all be coded as monomolecular transformations (R1C(=O)R2 → R1C(NH2)R2) in 

the way that is done in (Yim et al., 2011) nor they can be coded in the form Glutamate + 

R1C(=O)R2 → Oxoglutarate + R1C(NH2)R2, (where R1 and R2 can be C or H) as done in (Henry 

et al., 2010). 

Another issue that retrosynthesis algorithms need to overcome is to handle multiple products when 

the reactions are reversed (as they should be in any retrosynthesis process). Indeed when a reaction 

proceeds forward one assumes that the substrates are readily available and this is generally the case 

when moving down through a metabolic pathway, where the substrates of any given reactions are 

the products of upstream reactions. In retrosynthesis, the products become the substrates of the 

reversed reaction, and these substrates are not necessarily known. To illustrate this issue let us 

consider the reversed reaction T + P => S, where T is our retrosynthesis target. T is known but not P, 

in principle we should apply the rule to any compound P of the chemical universe (since P is not 

necessarily a known metabolite). This solution is of course not practical. To palliate this issue, 

RetroPath do not reverse multiproduct reactions but construct an extended metabolic space using 

reaction rules applied on the metabolites chassis strains. The other retrosynthesis algorithms do not 

explicitly address this issue, albeit mono product reactions can certainly be reversed, and in 

principle, all SimPheny rules can be used for retrosynthesis purposes. 
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As summarized in Table 1, SimPheny (Yim et al., 2011) does not deal with multiple substrates and 

products as all rules are monomolecular, BNICE in (Henry et al., 2010) handles partially the 

problem, as 70 out of 86 reactions are multimolecular but only 4 reactions have multiple substrates 

different than cofactors (compared to 35% in MetaNetX). GEM-Path and RetroPath work with rules 

handing multiple substrates and multiple products, thus reflecting better the complexity of 

metabolic reactions. Nonetheless, RetroPath2.0 allows only one substrate at a time to undergo 

promiscuity modelling so that reaction prediction remains tractable.	
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SUPPLEMENTARY	NOTE	3:	DETECTION	OF	BIOMARKERS	THROUGH	METABOLIC	CIRCUITS	

Asides from metabolic engineering, reaction network prediction algorithms can also be used to 

develop whole-cell biosensors. Typical synthetic biosensors (Khalil and Collins, 2010) currently 

being developed comprise systems capable of sensing a small molecule generally though allosteric 

interactions with RNA aptamers (e.g. riboswitches) or transcription factors (van der Meer and 

Belkin, 2010) that upon sensing will express a reporter gene. In the context of medical diagnostics 

based on biomarkers detection the main advantages of synthetic cell-based technologies over abiotic 

detection based on purified antibodies, nucleic acid hybridization, or metabolomics analysis are 

lower cost, improved stability, and the possibility to be ultimately used as a personal home 

healthcare device. 

However, as of today, typical whole-cell biosensors are triggered by no more than half a dozen 

input signals. To palliate this shortcomings, we have recently proposed a method to expand the 

range of biologically detectable biomarkers by systematically engineering sensing enabling 

metabolic pathways (SEMP) (Libis et al., 2016; Delépine et al., 2016), i.e., metabolic pathways that 

transform non-detectable chemicals into molecules for which sensors already exist. The SEMP 

method has been successfully benchmarked to engineer biosensors that detect pollutants, drugs and 

biomarkers such as benzoic acid and hippuric acid (Libis et al., 2016). 

Here we investigate the use of RetroPath2.0 to search for all prostate cancer biomarkers that could 

potentially be detected using E. coli as a sensing device. 

Prostate cancer biomarkers were retrieved from the Human Metabolome Database (HMDB) and 

scanned literature to select biomarkers in various physiological fluids: serum (Sreekumar et al., 

2009; Zang et al., 2014; Li et al., 2016; Lima et al., 2016), urine (Sreekumar et al., 2009; Zhang et 

al., 2013; Struck-Lewicka et al., 2015; Fernández-Peralbo et al., 2016; Lima et al., 2016), and tissue 

(Sreekumar et al., 2009; McDunn et al., 2013; Lima et al., 2016; Huan et al., 2016). The above 

references gave a final list of about 800 small molecule biomarkers. Because we are considering 

engineered in E. coli we removed all E. coli native metabolites, we also removed duplicates and 

biomarkers that could not be found in HMDB because of ambiguous names. The resulting sanitized 

set was composed of 421 biomarkers (provided in supplementary materials). 
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RetroPath2.0 was run taking as source all (non-E. coli) prostate cancer biomarkers, and as sink a list 

of 500 effector molecules known to either activate or inhibit transcription factors (extracted from 

(Delépine et al., 2016)). SEMPs were generated by enumerating pathways linking source to sink in 

a single iteration by firing rules computed from MetaNetX (provided in supplementary materials). 

Among the 421 biomarkers, we found 27 biomarkers directly detectable by transcription factors, 

and 415 pathways enabling the transformations of 164 different biomarkers into 76 different 

effectors. Some of these results are presented in Supplementary Table S2.  

Notable amongst the biosensor listed in Supplementary Table S2 are H2O2 and glycine that are 

detectable by the native E. coli transcription factors OxyR and GcvR, respectively (Tartaglia et al., 

1989; Stauffer and Stauffer, 1994), and benzoate for which biosensors have already been built in E. 

coli (Libis et al., 2016) (detailed results are provided in the supplementary Table S2). Interestingly 

several biomarkers could be transformed into the same effector, thus enabling the integration of 

multiple biomarker signals into a unique detectable biosensor. 

The choice of the enzymes or the transcription factors involved in SEMP biosensors is important 

when one wishes the biosensor to be specific to a given analyte. Taking the example of N-acetyl-

aspartate from supplementary Table S2, some aspartate oxidase (1.4.3.16) transform also alternative 

substrates, such as L-aspartate, but other will have no activity on aspartate and transform only N-

acetyl-aspartate (Tedeschi et al., 2010, p. 121). Another strategy to increase specificity is to 

engineer multiple SMEP for a given analyte, for instance in supplementary Table S2, hippurate, 

sarcosine and creatinine can each be detected by two transcription factors. 

Examples of SEMP provided in Table S2 mostly involve only one enzyme, however RetroPath can 

of course produce longer pathways, for examples of such pathways the reader can consult our 

previous papers (Delépine et al., 2016; Libis et al., 2016). 

The results presented in supplementary Table S2 highlight the versatile use that a generic 

retrosynthesis and reaction network prediction algorithm can have beyond metabolic engineering. 
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SUPPLEMENTARY	FIGURES	

SUPPLEMENTARY	FIGURE	S1	

 

Supplementary Figure S1 – Reactions rules for EC class 4.5.1.-. Hydrogen are omitted for simplicity thus O stands for H2O, Cl 
for HCl and N for NH3. The last rule (R6) does not apply 4.5.1.2 and 4.5.1.4 since in addition to the removal of chlorine these 
reactions also involved removal of nitrogen. 
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SUPPLEMENTARY	FIGURE	S2	

Supplementary Figure S2. Example of a scope obtained for sarcosine. All the products of the pathways are transcription factor 
effectors (i.e. in the sink file, green squares). Reactions are given by their EC numbers. 

 

	 	



10	

	

SUPPLEMENTARY	FIGURE	S3	

	

Supplementary	Figure	S3.	Enumerated	pathways	for	the	production	of	ethylene	glycol.	Each	pathway	is	
depicted	by	a	distinct	color.	The	final	step	of	the	pathway	engineered	in	(Liu	et	al.,	2013)	is	in	red	(B,	A).	
Enzymatic	step	1.13.12.19	is	also	known	as	RXN-12538	(MetaCyc)	and	R09784	(Kegg).	Compounds	are	
represented	by	their	structures,	and	reactions	by	their	EC	numbers.	Ethylene	glycol	and	sink	compounds	
are	surrounded	by	a	solid	line,	others	by	a	dashed	line.	Cofactors	and	currency	metabolites	(such	as	NADPH,	
NADH,	water,	proton,	dioxygen)	have	been	removed	for	clarity.	Involved	compounds:	ethylene	glycol	(A),	
glycolaldehyde	(B),	ethylene	oxide	(C),	ethylene	(D)	and	oxoglutarate	(E).	
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SUPPLEMENTARY	FIGURE	S4	

Supplementary	Figure	S4.	Receiving	operating	characteristic	curves	(ROC)	curves	for	the	rules	of	
RetroPath2.0	of	diameter	d	=	8.	
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SUPPLEMENTARY	FIGURE	S5	

Supplementary	Figure	S5.	Box	plot	comparing	the	distribution	of	reaction	scores	for	specialist	and	
generalist	enzymes	in	E.	coli.	
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SUPPLEMENTARY	FIGURE	S6	

Figure	S6.	Specificity	of	rules	vs.	promiscuity	recovery	in	function	of	diameter.	Rules	specificity	is	
calculated	as	percentage	of	gene-specific	rules	(solid	black	line),	which	represents	the	percentage	of	the	
total	rules	at	a	given	diameter	that	are	associated	with	a	single	gene	in	Escherichia	coli.	Promiscuity	
recovery	is	calculated	as	rule	gene-reaction	coverage	(red	dotted	line),	which	represents	the	average	
maximum	percentage	of	reactions	associated	with	a	gene	that	are	covered	by	a	rule	at	the	given	diameter.	
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SUPPLEMENTARY	TABLES	

SUPPLEMENTARY	TABLE	S1	
Supplementary Table S1 – Assignment of sequences to rules at different diameters and using decreasing EC class level of 
specificity. Orphan SMARTS and reactions at a given EC level are the only ones that are considered for sequence assignment at a 
lower level. 

Diameter EC_level SMARTS Orphan_SMARTS Reactions Orphan_reactions 

2  8210 3680 13782 3259 
2 4 8210 655 13782 823 
2 3 8210 47 13782 86 
2 2 8210 5 13782 12 
2 1 8210 0 13782 0 
4  10501 5141 13782 4377 
4 4 10501 1058 13782 1280 
4 3 10501 61 13782 90 
4 2 10501 15 13782 25 
4 1 10501 0 13782 0 
6  12573 6806 13782 5593 
6 4 12573 1466 13782 1661 
6 3 12573 72 13782 96 
6 2 12573 16 13782 25 
6 1 12573 0 13782 0 
8  13855 7898 13782 6280 
8 4 13855 1719 13782 1918 
8 3 13855 73 13782 97 
8 2 13855 16 13782 25 
8 1 13855 0 13782 0 
10  14772 8603 13782 6611 
10 4 14772 1836 13782 1863 
10 3 14772 76 13782 99 
10 2 14772 16 13782 25 
10 1 14772 0 13782 0 
12  15460 9134 13782 6874 
12 4 15460 1936 13782 1846 
12 3 15460 76 13782 94 
12 2 15460 16 13782 25 
12 1 15460 0 13782 0 
14  15867 9433 13782 7007 
14 4 15867 1975 13782 1856 
14 3 15867 77 13782 98 
14 2 15867 16 13782 25 
14 1 15867 0 13782 0 
16  16227 9741 13782 7159 
16 4 16227 2025 13782 1811 
16 3 16227 79 13782 72 
16 2 16227 16 13782 24 
16 1 16227 0 13782 0 
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SUPPLEMENTARY	TABLE	S2	
Supplementary	Table	S2	–	Examples	of	metabolic	pathways	enabling	the	detection	of	prostate	cancer	biomarkers.	
Supplementary	Figure	S2	illustrates	the	scope	of	sarcosine.	

Biomarker	 Metabolic	Reaction	 Effector(s)	
References:	Sample	(S),	Enzyme	(E),	
Transcription-Factor	(TF)*	

Hippuric	
acid	

	

Benzoic	
acid	

	

Glycine	

S:	Urine	down-regulated	(Struck-
Lewicka	et	al.,	2015)	

E:	hippurate	hydrolase	(3.5.1.32)	

TF:	benzoate	BenR		(Libis	et	al.,	2016),	
glycine	GcvR	(Stauffer	and	Stauffer,	
1994)	

Kynurenine	

	 	

Glycine	

Anthranilate	

S:	Serum,	Urine,	Tissue	up-regulated	
(Sreekumar	et	al.,	2009)	

E:	glycine	kynurenine-glyoxylate	
aminotransferase	(2.6.1.63),	anthranilate 
kynureninase (Jakoby and Bonner, 1953)	
TF:		glycine	GcvR	(Stauffer	and	Stauffer,	
1994)	anthranilate AntR (Urata et al., 
2004, p. 10)	

Sarcosine	

	

Glycine	

	

H2O2	

S:	Serum,	Urine,	Tissue	up-regulated	
(Sreekumar	et	al.,	2009)	

E:	sarcosine	oxydase	(1.5.3.1)	

TF:	glycine	GcvR	(Stauffer	and	Stauffer,	
1994),	H2O2:		OxyR	(Rubens	et	al.,	
2016)	

N-acetyl-
aspartate	

	

H2O2	

S:	Serum,	Urine,	Tissue	up-regulated	
(Sreekumar	et	al.,	2009)	

E:	aspartate	oxydase	(1.4.3.16)	

TF:		OxyR	(Rubens	et	al.,	2016)	

Pipecolate	

	

H2O2	

S:	Serum,	Urine,	Tissue	up-regulated	
(Sreekumar	et	al.,	2009)	

E:	pipecolate	oxydase	(1.5.3.7)	

TF:	OxyR	(Rubens	et	al.,	2016)	

Cholesterol	

	

H2O2	

S:	Serum,	Urine,	Tissue	down-regulated	
(Sreekumar	et	al.,	2009)	

E:	chlolesterol	oxydase	(1.1.3.6)	

TF:	OxyR	(Rubens	et	al.,	2016)	

L-Sorbose	

	

H2O2	

S:	Urine	down-regulated	(Lima	et	al.,	
2016)	

E:	sorbose	oxydase	(1.1.3.13)	

TF:	OxyR	(Rubens	et	al.,	2016)	

Creatinine	

	

Urea	

	

H2O2	and	
glycine	via	
sarcosine	

S:	Serum,	Urine,	Tissue	down-regulated	
(Sreekumar	et	al.,	2009)	

E:	creatininase	(1.1.3.13)	followed	by	
creatine		amidinohydrolase	(3.5.3.3)	

TF:	urea	NtcA	(D’Orazio	et	al.,	1996),	
glycine	GcvR	(Stauffer	and	Stauffer,	
1994),	H2O2:		OxyR	(Rubens	et	al.,	
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2016)	

*	The	column	indicates	the	sample	type	(Serum,	Urine,	Metastasic	Tissue)	and	if	the	biomarker	has	been	found	to	be	up	or	down	regulated	
compared	to	a	controlled	sample	of	the	same	type.	References	for	enzymes	were	taken	from	MetaNetX	and	references	for	transcription	factor	were	
taken	from	the	SensiPath	server	(Delépine	et	al.,	2016).	

SUPPLEMENTARY	DATA	

RETROPATH2.0	WORKFLOW	
RetroPath2.0 is provided as a KNIME workflow (RetroPath2.0.knwf file). Knime and RetroPath2.0 
installation procedures are described in RetroPath2.0_installation.pdf. Updates for RetroPath2.0 
will be hosted at MyExperiment.org (https://www.myexperiment.org/workflows/4987.html).  

TUTORIAL	&	EXAMPLES	
The RetroPath2.0_tutorial.pdf file can be used as a starting point for beginning with RetroPath2.0. It 
is a step-by-step tutorial describing how to use the tool through basic retrosynthetic examples. Data for 
examples are in the tutorial_data folder. 

SCOPE	VIEWER	
The Scope Viewer is a modest tool dedicated to the visualization of scope files outputted by RetroPath2.0. It 
is available in the scope_viewer folder.	

SET	OF	SMARTS	RULES	
Several sets of SMARTS rules are provided in the data/rules subfolder. Files knime-ready-rules_mnx-
all-forward_ECOLI-iJO1366.csv and knime-ready-rules_mnx-all-reverse_ECOLI-
iJO1366.csv are subsets of SMARTS rules we generated from reactions available in the MetaNetX 
database. Both subsets correspond to the E. coli metabolism for diameters 2 to 16 (see main text). The first 
set contains rules in the direct direction ([…]-forward-[…].csv file) while the second contains rules in 
the reverse direction (for retrosynthesis, […]-reverse-[…].csv file). Extracted rules for BNICE (mono- 
and bi-substrate rules) and Sympheny are also provided. All of the set of rules are ready to be used with 
RetroPath2.0.	

SET	OF	COMPOUNDS	FROM	E.	COLI	METABOLISM	
The data/ecoli-iJO1366-mnx-compounds.csv file contains the list of compounds that we extracted 
from the E. coli iJO1366 whole-cell model and MetaNetX cross-references. See main text for details. 

COVERAGE	OF	BIOPRODUCTION	PATHWAYS	
Generated	results	are	provided	in	the	results/bioproduction_pathways	folder.	

The	 bioproduction_pathways/LASER_MBE	 subfolder	 contains	 results	 regarding	 the	 compounds	
extracted	from	the	LASER	database	and	Metabolic	Engineering	papers	published	in	2016	(see	main	text	for	
details).	The	laser.csv	and	mbe.csv	 files	provide	details	on	each	compound	(input	 subfolder).	Scope	
(*_scope.json	file),	enumerated	pathways	(*.png	and	pathways.csv	files),	and	structures	of	involved	



17	

	

compounds	 (chemical_structures.csv	 file)	 are	 listed	 in	 the	 pathways	 subfolder	 for	 each	 tested	
compound	that	leads	to	at	least	one	pathway.		

The	 bioproduction_pathways	 folder	 does	 also	 contain	 the	 whole	 scope	 computed	 for	 styrene	
(styrene_scope	subfolder)	and	terephthalic	acid	(TPA	subfolder)	that	are	respectively	shown	by	figure	4	
and	5	of	the	paper.	These	scopes	can	be	generated	again	using	the	source	(source.csv),	sink	(sink.csv)	
and	rule	(rules.csv)	sets	that	belong	to	each	folder.	

DETECTION	OF	BIOMARKERS	THROUGH	METABOLIC	CIRCUITS	
Data are provided in the results/detectable_biomarkers folder. The source file is composed of 
prostate cancer metabolites. The sink file comprises effectors (small molecules) activating of inhibiting 
transcription factors. Transcription factors are not provided but can easily be retrieved by entering the InChIs 
of the effectors in the SensiPath web server SensiPath.micalis.fr [1]. Table S2 in the main text was generated 
from results extracted in the file result.csv (res folder). The .csv and .json files attached to each 
biomarkers comprise a lower number of pathways than in the result.csv file, the reason is that in the 
former case pathways are enumerated only when all the products of the pathways are in the sink. 

RP2PATHS	OPEN	SOURCE	CODE	FOR	ENUMERATING	PATHWAYS	
The source code is available on GitHub in the “RP2paths” repository at https://github.com/brsynth/rp2paths ). 
It is release under the MIT license (see https://opensource.org/licenses/MIT). Installation and documentation 
information are provided within the repository (INSTALL.txt and README.md files) as well as some 
examples (see examples folder). 

In order to enumerate pathways from the LASER dataset, the following command was used (for a given 
compound): 

python RP2paths.py all target_scope.csv --outdir pathways --notPathsStartingBy 
$(cat list_currency_metabolites.txt) 

where: 

● target_scope.csv is a result scope file outputted by RetroPath2.0 that describes the network linking 
the targeted compound to the chassis. 

● ‘--outdir’ sets the path to the output folder 

● ‘--notPathsStartingBy’ defines a list of compounds that do not want as to use as starting chassis 
compound.” 
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