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Supervised / Unsupervised Learning

Active / Reinforcement Learning

in vitro / in vivo Learning
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• Can we improve protein 
production without increasing the 
price of cell-free reaction?

• Can we provide efficient 
predictions of protein production 
in vitro?

• Can we highlight the critical 
parameters involve in protein 
production in vitro?

Reference composition
Sun Z.Z. et al. J. Vis. Exp. 2013

Combinatorial space = 411 
= 4 194 304 compositions

Lysate-based cell-free systems (TXTL)

Active learning to optimize cell-free productivity
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• Set up an initial batch sampling the space of possible compositions
• Measure yield level though fluorescence
• Develop a Neural Network models predicting yield from composition
• Use the models to predict the yield for each composition not yet tested
• Select next batch of compositions to be measured based on exploitation vs. exploration 
• Repeat
 

• Herisson J, et al. Nat Commun 13, 5082 (2022)

Active learning to optimize cell-free productivity
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Yield x 34 
after 7 iterations

• Borkowski O, et al. Nat Commun 11, 1872 (2020)

Active learning to optimize cell-free productivity
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Top 3 best 
producers

Randomly selected 
producers

6x more efficient than the best in 
vitro CO2-fixing system described to 
date (CETCH 5.4 , Schwander et al. 
Science 2016)

Control (CETCH5.4)

Active learning to optimize cell-free metabolic pathways
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To perform a diagnostic:

• Quantify a panel of biomarkers (metabolites) on clinical 
samples (using metabolomics)

• Feed measured biomarkers concentrations (xi) to

• Is it possible to avoid biomarker concentration 
measurements?

Ø Engineer the trained network in vitro or in vivo and 
directly use it on clinical samples
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Perceptron weights (wi) are learned to increase 
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• Zang, et al. PLoS One 2013 and J Proteome Res. 2014
• Shen B, et al. Cell. 2020
• …..

Prostate cancer
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TRAINING THE NETWORK USING THE TRAINED NETWORK

In vitro / in vivo learning: why?
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ENGINEERING THE TRAINED NETWORK

Enzymatic transformation Reporter gene

Sigmoid behavior

Need to actuate weighted sum and activation function

! " = Σ %! &! '! !(

In theory (Michaelis-Menten) 
when  'i << [Ei] :

wi = %! &!
where %! is a kinetics 
constant
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• Zang, et al. PLoS One 2013 and J Proteome Res. 2014
• Shen B, et al. Cell. 2020
• …..

Engineering a neural metabolic network: the concept

Perceptron weights (wi) are learned to increase 
classifier accuracy

TRAINING THE NETWORK
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measurement model
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ENGINEERING THE TRAINED NETWORK

Enzymatic transformation Reporter gene

Sigmoid behavior

Need to actuate weighted sum and activation function

! " = Σ %! &! '! !(

In theory (Michaelis-Menten) 
when  'i << [Ei] :

wi = %! &!
where %! is a kinetics 
constant
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•  Voyvodic, P.L., Pandi, A., Koch, M. et al. Nat Commun 10, 1697 (2019).

Engineering a neural metabolic network: the concept
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• Pandi A., Koch M. et al. Nat Commun 10, 3880 (2019)
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Engineering a neural metabolic network in vitro



Jean-Loup Faulon, Sept. 2024   12

TARGETED BEHAVIOUR

RF
U

Hippurate……………
Cocaine……..…..……
Benzamide…….…….
Biphenyl-2,3-diol…

O
BS

ER
VE

D
  B

EH
AV

IO
U

R

Hippurate……………
Cocaine……..…..……
Benzamide…….…….
Biphenyl-2,3-diol…

TARGETED BEHAVIOUR

#(% + ∑!! "!) < 0.5 #(% + ∑!! "!) ≥ 0.5

#(% + ∑!! "!) 
% =  - 0.50
!1=  0.25 0.50
!2=  0.25 0.50
!3=  0.50 0.50
!4=  0.50 0.50

E1
E2

E42

Activated-TF
GFP

Hippurate

Cocaine

Benzamide

Biphenyl-2,3-diol

E41

E3

Benzoate BenR

• Kinetics model is used to compute the enzyme 
concentration for each weight

Logistic 
regression
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Engineering a neural metabolic network in vitro
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• Can we divert native metabolism to handle problems that are usually solved in silico?

• Ability of physical, chemical or biological devices to solve problems is studied in AI with Reservoir Computing (RC)

Tanaka G. et al. Neural Networks 115, 100 (2019)

Engineering a neural metabolic network in vivo?
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E. coli Reservoir Computer (E. coli RC)

Can we exploit E. coli native metabolism to build an E. coli RC to solve computational problems?

How complex a problem can E. coli RC solve?

Can we find practical uses of E. coli RC?
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gradient backpropagation 

Conventional Reservoir
Physical  Reservoir
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Can we exploit E. coli native metabolism to build an E. coli RC to solve computational problems?

How complex a problem can E. coli RC solve?

Can we find practical uses of E. coli RC?
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• accurately reproduce phenotype for 

different media composition
• enable gradient backpropagation 

E. coli Reservoir Computer (E. coli RC)
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	 S	G = 0
					0	≤ G ≤ G!'
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GEnome-scale	Metabolic	Model	(GEM/FBA)
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GEM/FBA growth rates vs. measured 
growth rate in E. coli MG1655 for 1 to 4 
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gradient backpropagation
to find mapping between 
medium concentrations 
and uptake fluxes 
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					0	≤ G ≤ G!'

where
−	G	=	set	of	all	reaction	fluxes
−	S		=	stochiometric	matrix
−G!'	=	uptake	medium	fluxes	upper	bounds

Prior-ANN

Building an E. coli RC to increase mechanistic model predictability 

Conventional Reservoir
Post-ANNPhysical  Reservoir

Conventional Reservoir should:
• accurately reproduce phenotype for 

different media composition
• enable gradient backpropagation 
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AMNs (Artificial Metabolic Networks): a gradient backpropagation 
compatible method surrogating classical mechanistic models
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Trained on GEM/FBA (                       ) calculated growth rates with E. coli iML1515 model for 1000 different media (M9 + random combinations of nutrients among 
sugars, nucleotides, amino acids)

• Faure L. et al. Nat Commun 14, 4669 (2023)
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AMNs  can be used as reservoir in RC to improve mechanistic 
model predictability

Plate readerPrecultured of 
E. coli MG1655

Medium = M9 + 280 combinations of nutrients with fixed concentration (among 28 sugars, nucleotides, amino acids)

GEM/FBA results with best scaled input

Measured growth rate (h-1)
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E. coli GEM/FBA

Growth 
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• Faure L. et al. Nat Commun 14, 4669 (2023) & Faulon et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2024)
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Plate readerPrecultured of 
E. coli MG1655

Medium = M9 + 280 combinations of nutrients with fixed concentration (among 28 sugars, nucleotides, amino acids)

GEM/FBA results with reservoir inputs
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• Faure L. et al. Nat Commun 14, 4669 (2023) & Faulon et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2024)
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Growth 
rate

Plate readerPrecultured of 
E. coli MG1655

Medium = M9 + 280 combinations of nutrients with fixed concentration (among 28 sugars, nucleotides, amino acids)

GEM/FBA results with reservoir inputs
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AMNs  can be used as reservoir in RC to improve mechanistic 
model predictability

• Faure L. et al. Nat Commun 14, 4669 (2023) & Faulon et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2024)
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Can E. coli RC be used to solve a classical machine learning problem?
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Building an E. coli RC to solve a regression problem

Growth 
rate

Plate readerPrecultured of 
E. coli MG1655

Medium = M9 + 280 combinations of nutrients with fixed concentration 
(among 28 sugars, nucleotides, amino acids)
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Example of regression problem : OpenML ‘Energy Efficiency’ dataset (768 instances, X = 8 features, y = % efficiency)
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Using E. coli RC to solve a regression problem

• Faulon et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2024)
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E. coli MG1655

Medium = M9 + 280 combinations of nutrients with fixed concentration 
(among 28 sugars, nucleotides, amino acids)
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Example of regression problem : OpenML ‘Energy Efficiency’ dataset (768 instances, X = 8 features, y = % efficiency)
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Using E. coli RC to solve a regression problem
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• Faulon et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2024)

5-fold CV



Jean-Loup Faulon, Sept. 2024   27

Using E. coli RC to solve many regression problems

10 OpenML regression problems of increasing difficulty

R2 
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MLR
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• Faulon et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2024)
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Using E. coli RC to solve many regression problems

10 OpenML regression problems of increasing difficulty
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Conventional RC (generative prior)
Physical RC (selective prior)

• Faulon et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2024)
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Ac
c

Using E. coli RC to solve classification problems
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• All datasets from Baltussen et al. Nature 2024 

• Faulon et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2024)
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Can E. coli RC solve a concrete classification problem ?

The problem:

• Blood sample are collected for Covid-19 patients 
once they enter the hospital

• Metabolomics analyses are carried out on the 
samples

• Can we predict from the analyses if the disease 
outcome will be severe or moderate?

CHU Grenoble-Alpes cohort (training set):

• 81 patients 
• 624 molecules detected (56 E. coli medium molecules)
• severe (31) –  moderate (50)

Full set Medium set

Classifier performances (20-fold CV results)

Ac
cu

ra
cy

Accuracy = 0.84 in Shen et al. Cell 2020; 182(1): 59–72 
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Using E. coli RC for classification

The problem:

• Blood sample are collected for Covid-19 patients 
once they enter the hospital

• Metabolomics analyses are carried out on the 
samples

• Can we predict from the analyses if the disease 
outcome will be severe or moderate?

• Can we use an E. coli RC grown on the patient’s 
sample to predict if the disease outcome will be 
severe or moderate ?

Conventional RC 
to predict disease 
outcome  from 
phenotype

E. coli MG1655 
or E. coli gene-KO

AMN model
(GEM iML1515)
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Building an E. coli physical RC for classification

Targeted
double-strand break

Lambda red-mediated
homologous recombinaison

Donor
DNA

pCas

pTargetF

Insert

Insert

Ø CRISPR-Cas9/Lambda red system

o Jiang et al. , Appl Environ Microbiol, 2015
o Scarless, Efficient, Multiplexable
o ~80 KOs built

Ø Gene deletions force E. coli to collect specific
nutrients from the plasma in order to grow

Ø According to conventional RC, differences of 
nutrients concentration in the plasma should result
in different growth curve

Deproteinized
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Nutrients (all metabolites
except the one of the 

auxotrophy) 
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preculture
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Ø Gene-KO E. coli 
Physical RC to predict 
disease outcome  from 
growth rate and ODMAX
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Benchmarking E. coli physical RC for classification
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Perspectives

• Supervised Learning & Active learning

o New generative AI models (transformer) for retro-(bio)synthesis and to generate sequences
o LLMs (like GPT4) to drive biofoundries
o Active Learning / Transfer Learning / Hybrid Learning to cope with small training set sizes

• in vitro/in vivo learning

o Decades of research and development in Synthetic Biology to build bottom-up computing devices 
(digital, analog, neural,…)… but many difficulties

o Most devices were inspired from natural biological networks: perhaps one should to consider 
building devices top-down, i.e. exploiting/modifying hosts rather than plugging orthogonal devices.
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