mSSB UE2.3 Metabolic Engineering

Cellular metabolism and the main metabolic pathways

By Ioana Popescu

1

Metabolite:

• a naturally occurring molecule typically under 1000 MW

Enzyme:

- any protein which catalyzes chemical reactions involving the small molecules
- (ribozyme = catalytic RNAs)

Transporter:

• a membrane bound protein which shuttles ions, small molecules or macromolecules across membranes, into cells or out of cells.

Metabolism:

- complete set of biochemical reactions within a cell
- sum of processes involved in energy conversions in the cell

Metabolic pathways

complex sequences of controlled chemical reactions

Metabolite:

• a naturally occurring molecule typically under 1000 MW

Background information from organic chemistry:

- Elements
- Bonds
- Molecules
- Isotopes
- lons
- Nomenclature
- Stereochemistry

Chemical components of a cell

Metabolite:

• a naturally occurring molecule typically under 1000 MW

Metabolite:

• a naturally occurring molecule typically under 1000 MW

Enzyme:

- any protein which catalyzes chemical reactions involving the small molecules
- (ribozyme = catalytic RNAs)

Transporter:

• a membrane bound protein which shuttles ions, small molecules or macromolecules across membranes, into cells or out of cells.

Metabolism:

- complete set of biochemical reactions within a cell
- sum of processes involved in energy conversions in the cell

Metabolic pathways

complex sequences of controlled chemical reactions

Catabolic and anabolic pathways in cellular metabolism

Classification of organisms

	Designation	Description
Source of Carbon	AutotrophHeterotroph	 CO₂ Organic molecules (e.g. sugars)
Source of Electrons	OrganotrophLithotroph	 Organic molecules (e.g. sugars) Inorganic molecules (e.g. H₂, H₂O, H₂S, NH₃, S)
Source of Energy	PhototrophChemotrophMixotroph	 Light Oxidation of chemical compounds Light & Oxidation of chemical compounds
Ability to use O ₂ for respiration & sensitivity to O ₂	 Strict/Obligate aerobe Strict/Obligate anaerobe Facultative aerobe/anaerobe Aerotolerant anaerobe 	 Require O₂ for respiration – cannot survive without O₂ Cannot survive in the presence of O₂ Can survive in the presence or absence of O₂ Do not respire O₂, but are able to survive in the presence of O₂

Human: Heterotroph, Organotroph, Chemotroph, Strict/Obligate aerobe *E. coli*: Heterotroph, Organotroph, Chemotroph, Facultative aerobe/anaerobe *S. cerevisiae*: Heterotroph, Organotroph, Chemotroph, Facultative aerobe/anaerobe Plants & algae: Autotroph, Lithotroph, Phototroph, Strict/Obligate aerobe

Different organisms – different cellular metabolisms

Cell content

	E. coli	S. cerevisiae	H. sapiens
Metabolites	3 755	16 042	114 100
Reactions	8 254	31 624	6 302
Pathways	1 336	9 595	49 029
Enzymes	1 204	909	2 126
Transporters	299	149	0
Proteins	1 549	1 259	5 779
Metabolite synonyms	37 982	27 947	333 312
Metabolites in reactions	3518 (93.7 %)	11 157 (69.5 %)	23 473 (20.6 %)
	http://www.ecmdb.ca	http://www.ymdb.ca	http://www.hmdb.ca
	Sajed et al. Nucleic Acids Research (2016) 44, D495-D501	Jewison et al. Nucleic Acids Research (2012) 40, D815-D820	Wishart et al. Nucleic Acids Research (2013) 41, D801-D807

Glycolysis

Glycolysis:

- Oxidation of 1 Glucose (6C) to 2 Pyruvate (3C)
- Production of cellular energy sources:

• 2 ATP

- 2 NADH,H⁺
- Supply of 6 precursor metabolites for biosynthesis
- ∆G'°= 74 kJ.mole⁻¹
- ΔG'= 98 kJ.mole⁻¹

Glycolysis

Pentose Phosphate pathway

ED pathway

Entner–Doudoroff Pathway:

- Only in some bacteria (ex. *E. coli*), archeae and *Entamoeba histolyca*, *Aspergillus niger, Penicillum notatum*
- Oxidation of 1 Glucose (6C) to 2 Pyruvate (3C)
- Production of cellular energy sources:
 - 1 ATP
 - 1 NADH,H⁺
 - 1 NADPH,H⁺
- Supply of 5 precursor metabolites for biosynthesis

ED pathway

Central pathways Metabolism of carbohydrates and carboxylic acids

Fermentation

ATP produced only by substrate-level phosphorylation

Fermentation

• ATP produced only by substrate-level phosphorylation

Krebs cycle

Krebs cycle

Respiration

External terminal electron acceptors:

Type of respiration	External terminal electron acceptors	Reduced products
Aerobic respiration	O ₂	H ₂ O
Anaerobic respiration	Fumarate: HOOC-CH=CH-COOH	Succinate: HOOC-CH ₂ -CH ₂ -COOH
	Trimethylamine N-oxide: $(CH_3)_3$ -N \rightarrow O	Trimethylamine: (CH ₃) ₃ -N
	S, S ₂ O ₃ ²⁻ , SO ₄ ²⁻	H ₂ S
	$NO_{3}^{-}, NO_{2}^{-}, NO$	N ₂
	Fe ³⁺	Fe ²⁺

- A H⁺ (electrochemical) gradient is produced across a membrane = proton-motrice force
- Flow of H⁺ down the gradient (across the membrane) through the H⁺ channel of ATP synthase: ATP synthesis = oxidative phosphorylation

- Cytoplasmic membrane
- Complexity ability to adapt to different
 - Growth conditions
 - Electron donors: NADH, NADPH, FADH₂, organic substances, H₂, NH₃, NO₂⁻, S, S²⁻, Fe²⁺
 - Electron acceptors:
 - organic compounds (fumarate, dimethyl sulfoxide, trimethylamine N-oxide)
 - inorganic compounds (O₂, NO₃⁻, NO₂⁻, NO, ClO₃⁻, ClO₄⁻, S, S₂O₃²⁻, SO₄²⁻, SeO₄²⁻, AsO₄³⁻, CO₂, oxidized manganese ions, gold, Fe³⁺)

E. coli aerobic respiration

Metabolism of carbohydrates and carboxylic acids

- Oxidation of 1 Glucose to
 - 6 CO₂ (Complete oxidation)
 - Various fermentation products (Partial oxidation)
- Production of cellular energy sources:
 - Up to 38 ATP / glucose
 - Reducing power (NADH, NADPH, ...)
- Tight regulation:
 - Redox potential
 - Energy charge
 - Presence of terminal e- acceptors
 - Growth substrate
 - Amount
 - Type
 - Catabolite repression
 - Diauxic growth: multiple carbon sources are utilized sequentially
 - Allosteric modulation of enzymes
 - Covalent modifications of enzymes (e.g. phosphorylation)
 - Transcriptional control
 - Compartmentalization & transport

Central pathways – Precursor metabolites – Building blocks

Metabolism of carbohydrates and carboxylic acids

- Supply of 12 major precursor metabolites for biosynthesis
 - Used with ATP and NAD(P)H for the biosynthesis of cellular building blocks

Precursor metabolites	Pathway	Amount required for biosynthesis of <i>E. coli</i>	Building blocks produced
Glucose-6-P	Glycolysis	205 µmol / g cell	NDP-glucose
Fructose-6-P	Glycolysis	71 µmol / g cell	NDP-mannose, NDP-N-acetylglucoseamine,
Glyceraldehyde-3-P Dihydroxyacetone-P	Glycolysis	129 µmol / g cell	Isoprenoids Glycerol-P (& lipids)
3-Phosphoglycerate	Glycolysis	1496 µmol / g cell	Gly, Ser, Cys, nucleotides (purine)
Phosphoenolpyruvate	Glycolysis	519 µmol / g cell	Phe, Tyr, Trp
Pyruvate	Glycolysis	2833 µmol / g cell	Ala, Val, Leu, Ile, Lys, Isoprenoids
Ribose-5-P	Pentose phosphate	898 µmol / g cell	His, nucleotides (pentose)
Erythrose-4-P	Pentose phosphate	361 µmol / g cell	Phe, Tyr, Trp
Acetyl-CoA	TCA cycle	3748 µmol / g cell	Leu, Fatty acids, Isoprenoids
α-Ketoglutarate	TCA cycle	1079 µmol / g cell	Glu, Gln, Pro, Arg, nucleotides (purine)
Oxaloacetate	TCA cycle	1787 µmol / g cell	Asp, Asn, Lys, Thr, Met, Ile, nucleotides
Succinyl-CoA	TCA cycle		Met, Lys, tetrapyrroles (ex. Heme)

Precursor metabolites – Building blocks – Macromolecules

Metabolism of carbohydrates and carboxylic acids

- Supply of 12 major precursor metabolites for biosynthesis
 - Used with ATP and NAD(P)H for the biosynthesis of cellular building blocks
 - Polymerization of building blocks

Isoprenoids / Terpenoids

Not essential for

- Growth
- Respiration
- Development
- Reproduction

Beneficial for the producer:

- Improve survival fitness
- Bactericides or fungicides
- Specific receptors

Produced at low titers

Complex organic compounds

- Difficult to synthetize
- Difficult to derivatize

Main classes

- Isoprenoids / Terpenoids
- Alkaloids
- Flavonoids
- Non ribosomal peptides
- Polyketides

Bioactive molecules

- Pharmaceuticals
 - Antibacterials
 - Antifungals
 - Antitumor
 - Antihelminthic
 - Antiviral
 - Herbicidal
 - Insecticidal
 - Immunosupressors

/

Interesting for humans

Candidates for metabolic engineering

Secondary metabolism

plants

Wilson & Roberts. Current Opinion in Biotechnology (2014) 26, 174–182

Secondary metabolism

Secondary metabolism

bacteria

Weissman & Leadlay. Nature Reviews Microbiology (2005) 3, 925-936

Producing sugars

34

Producing sugars

Some invertebrates •

Glyoxylate by-pass:

•

•

- Glyoxysomes of eucaryotes •
- Allows grow on acetate and fatty acids: 2 Acetyl-CoA \rightarrow 1 Succinate •
- Supply of precursor metabolites for biosynthesis •

Producing sugars

- Autotroph organisms
 - CO₂ assimilation / CO₂ fixation / carbon fixation
- Phototroph
 - Energy = light

 $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2$

Producing sugars

Light reactions

- e- flow: from H₂O to NADP⁺
- A H⁺ (electrochemical) gradient is produced across a membrane = proton-motrice force
- Flow of H⁺ down the gradient (across the membrane) through the H⁺ channel of ATP synthase: ATP synthesis = oxidative phosphorylation

Producing sugars

Calvin cycle

Producing sugars

Reverse/reductive TCA cycle

Arnon-Buchanan cycle:

- Used by some autotrophic anaerobic and microaerobic bacteria and archaea for CO₂ assimilation
- two ferredoxin-linked (Fd) CO₂-fixation reactions are O₂ sensitive

Ex. Chlorobium thiosulfatophilum

- Photosynthetic green sulfur bacterium
- Anaerobic
- Inorganic medium:
 - sulfide and thiosulfate as e- donors
 - CO₂ as an obligatory
 carbon source = Strictly
 autotrophic

Wood-Ljungdahl pathway:

- Used by some autotrophic anaerobic bacteria and archaea for CO₂ assimilation
 - Acetogenic bacteria
 - Methanogenic archeae
 - ...
- One $CO_2 \rightarrow CH_3$
- One $CO_2 \rightarrow CO$

- High energetic efficiency
- Limited to a few ecological niches
 - Anaerobiosis
 - Metals: Mo or W, Co, Ni, and Fe
 - Cofactors: tetrahydropterin and cobalamin

Fuchs-Holo bi-cycle

- Used only by green nonsulfur bacteria of Chloroflexaceae family
 - Phototroph, chemotroph & mixotroph
 - Autotroph & heterotroph
 - Anoxygenic
- Co-assimilation of CO₂ & numerous compounds (e.g., fermentation products) = mixotrophy
- High energy requirements
 - 7 ATP for Acetyl-CoA to Pyruvate
- No oxygen-sensitive steps

Berg. Applied and Environmental Microbiology (2011) 77, 1925-1936

Used only by the hyperthermophilic archaea of Crenarchaeota family

- dicarboxylate/4-hydroxybutyrate • (DC/HB) cycle
 - Desulfurococcales and Thermoproteales
 - Anaerobic ٠

•

- 3-hydroxypropionate/4hydroxybutyrate (HP/HB) cycle
 - Sulfolobales
 - Aerobic

Berg. Applied and Environmental Microbiology (2011) 77, 1925-1936

4-hydroxybutyrate cycles

42

Transport & Metabolism: linked processes in the cell

Ex: the *lac* operon

Pierce. Genetics (2nd Ed.) Freeman & Co (2005)

Membranes:

44

- Semi-permeable structure
- Dynamic
- Barrier with selective permeability
- Controlled entry & exit
 - Entry:
 - Nutriments
 - Signaling substances
 - Nucleic acids
 - Metal ions
 - Exit:
 - Products generated by metabolism
 - Secreted substances
 - Lipids
 - Carbohydrates
 - Proteins
 - Nucleic acids
 - Toxic substances
 - Metal ions
- Damaged \rightarrow cell death

- Phospholipid bilayer :
 - Esters of glycerol + fatty acids
 - + phosphate
 - Eukaryotes

- Bacteria
- Phospholipid monolayer :
 - Tetraethers of glycerol + fatty alcohols (+ phosphate esters)
 - Archaea

- Other lipids for rigidity
 - Sterols

- All eukaryotes Bacteria: methanotrophs
 - & mycoplasma
- Hopanes
 - Bacteria

45

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Transport across membranes

Eucaryotes

Transport classification: TC system

Passive transport:

- No energy required
- Occurs only in the downhill direction of concentration gradient

Facilitated diffusion:

http://www.tcdb.org

Transport classification: TC system

Active transport:

- Primary energy required
 - Chemical (ATP)
 - Electrical ٠
 - Solar •
- Occurs against a concentration gradient •

Group translocators:

substrate is modified during the transport process

TC#5: Transmembrane electron flow systems

http://www.tcdb.org

Kinetics of Transport processes

Movement of S_x is described by its flux JS_x :

- number of moles of S_x crossing a unit area of cell membrane per unit of time (moles.cm⁻²s⁻¹)
- Depends on :
 - permeability coefficient PS_X:
 - S_x solubility in lipids
 - S_x diffusion coefficient in lipids
 - Membrane thickness
 - Gradient across membrane
- Decomposed into:
 - Unidirectional influx $JS_X^{0 \rightarrow i}$ proportional to the outside concentration
 - Unidirectional efflux $JS_X^{i \rightarrow 0}$ proportional to the inside concentration
- at equilibrium $[S_X]_0 = [S_X]_i$ if S_x is not charged

If S_x is charged: voltage difference across membrane should be considered

Electrochemical energy: $\Delta \mu S_X = RT \ln ([S_X]_i / [S_X]_0) + z_XF (\Psi_i - \Psi_0)$

> F = Faraday constant = 96500 C $W_{-} = W_{-} = voltage difference across membra$

 $R = gas constant = 8,315 J.mol^{-1}K^{-1}$

T = temperature °K

 z_x = charge of S_x

 $\Psi_i - \Psi_0$ = voltage difference across membrane

Fick's Law: $JS_{X} = PS_{X} [S_{X}]_{0} - PS_{X} [S_{X}]_{i}$ influx efflux

Kinetics of Transport processes

Carrier mediated transport:

- Affinity
- Specificity
- Energy availability
- Regulation
- Localization

Major conformational changes

Steps: bind – transport – release ... like enzymes

Michaelis-Menten transport kinetics

$$V = V_{max} \frac{[S_X]_0}{K_m + [S_X]_0}$$

Different organisms – different cellular metabolisms

Cellular metabolism

Metabolite:

• a naturally occurring molecule typically under 1000 MW

Enzyme:

- any protein which catalyzes chemical reactions involving the small molecules
- (ribozyme = catalytic RNAs)

Transporter:

• a membrane bound protein which shuttles ions, small molecules or macromolecules across membranes, into cells or out of cells.

Metabolism:

- complete set of biochemical reactions within a cell
- sum of processes involved in energy conversions in the cell

Metabolic pathways

• complex sequences of controlled chemical reactions

Cellular metabolism

Enzyme:

- Any protein which catalyzes chemical reactions involving the small molecules
- Catalysis = acceleration of chemical reactions useful time scale
- Efficiency
- Selectivity
- Specificity / Promiscuity
- Mild conditions of temperature and pH
- Regulation for coordination of different metabolic pathways

History:

- 1752: René Antoine Ferchault de Réaumur first recognition and description biological catalysis = digestion of meat by secretions of stomach
- 1877: Wilhelm Kühne first used the term enzyme = the unformed or not organized ferments, whose action can occur without the presence of organisms and outside of the same
- 1926: James B. Sumner showed that the enzyme urease was a pure protein
- 1982: Thomas R. Cech and Sidney Altma discovery of ribozymes (Nobel Prize in Chemistry 1989)

Enzymes

- Primary, secondary, tertiary, quaternary structure = essential for activity
- Some require post-translational modifications (phosphorylation, glycosylation, ...)
- Some require cofactors:
 - Inorganic ions: Na, K, Mg, Cu, Fe, Mn, Mo, Zn, Ni, Se, ...
 - Complex organic molecules = coenzymes

 Prostetic group = cofactor very tightly or even covalently bound

Coenzyme	Dietary precursor in mammals
Thiamine pyrophosphate	Vitamin B1 = thiamine
Flavin adenine dinucleotide (FAD)	Vitamin B2 = riboflavin
Nicotinamide ademine dinucleotide (NAD)	Vitamin B3 = nicotinic acid (niacin)
Coenzyme A	Vitamin B5 = panthothenic acid
Pyridoxal phosphate	Vitamin B6 = pyridoxine
Biocytin	Vitamin B8 (H) = biotin
Tetrahydropholate	Vitamin B9 (M) = folic acid
5'deoxyadenosylcobalamin	Vitamin B12 = cobalamin
Ascorbate	Vitamin C = ascorbic acid
Menaquinone	Vitamin K
Lipoate	Not required in diet
Coenzyme Q	Not required in diet

- EC X.Y.Z.W X = class
 - Y = subclass
 - Z = sub-subclass
 - W = the serial number of the enzyme in its sub-subclass

n°	Class	Type of reaction catalyzed
EC 1	Oxidoreductases 🍟 + 🔛 🛹 🔲 + ビ	Transfer of e- = oxidation/reduction reactions
EC 2	Transferases + + +	Transfer of a functional group (e.g. methyl, glycosyl or phosphate group)
EC 3	Hydrolases 🛛 🗧 + 🐣 귍 📋 + 🤜	Hydrolysis of various bonds
EC 4	Lyases 🛛 🕹 📥 + 🗖	Cleavage of various bonds by means other than hydrolysis and oxidation
EC 5	Isomerases	Isomerization changes within a single molecule
EC 6	Ligases $ + + + + + + + $	Formation of covalent bonds coupled with the hydrolysis of a diphosphate bond in NTP
EC 7	Translocases	Movement of ions / molecules across membranes or their separation within membranes

How enzymes work?

- Create an energetically favorable environment for the reaction to take place
- Active site

 $R = gas constant = 8,315 J.mol^{-1}K^{-1}$

T = temperature °K

Enzymes do not change

- K′_{eq}
- ΔG′°
- ΔG'

Free energy

ΔG'° are additive	For redox reactions: standard reduction potential E'° is used to calculate $\Delta G'^{\circ}$
$A \equiv B \Delta G'^{\circ}_{1}$	A + 2 e- + 2 H ⁺ <i>ح</i> AH ₂ E'° _A
$B \longrightarrow C \Delta G'^{\circ}_{2}$	BH ₂ \implies B + 2 e- + 2 H ⁺ -E'° _B
$A \longrightarrow C \Delta G'^{\circ} = \Delta G'^{\circ}_{1} + \Delta G'^{\circ}_{2}$	$A + BH_2 \longrightarrow AH_2 + B \qquad \Delta E'^{\circ} = E'^{\circ}_A - E'^{\circ}_B$
	$\Delta G'^{\circ} = - nF \Delta E'^{\circ}$ n = number of e- transferred F = Faraday constant = 96500 C

Actual free energy of a reaction changes depends on reactant and product concentrations

$aA + bB $ $cC + dD$ $\Delta G' = \Delta G'^{\circ} + RT ln Q$	$Q = \frac{[C]^{a} [D]^{a}}{[A]^{a} [B]^{b}} = reaction quotient$
--	---

∆G'	Reaction	
< 0	Proceeds spontaneously forward	Exergonic
= 0	Is at equilibrium	
> 0	Cannot occur spontaneously – an input of free energy is required Proceeds spontaneously in reverse	Endergonic

Glycolysis Glucose	5000 μM	∆G′° (kJ.mol⁻¹)	∆G' (kJ.mol⁻¹)	
AIP		-16.7	-34	
Glucose-6-P	83 µM		\uparrow	
\bigstar		1.67	-2.9	
Fructose-6-P	14 μM			
ATP		-14.2	-19	
Fructose-1,6-bisP	31 µM		$\overline{\mathbf{x}}$	lanza nazativa fraz
^ ´		23.9	-0.23	large negative free
Dihydroxyacetone-P Glyceraldehyde-3-P	140uM 19 uN	vi 7.56	2.4	energy changes =
NAD+		6.3	-1.29	thormodynamically
1.3-bisphosphoglycerate	1 uM			irrovorsiblo
ADP		-18 9	0.09	IIIEVEISIDIE
3-nhosnhoglycerate	120 uM	10.5		
	120 μινι	лл	0.83	No reaction is at
	20	4.4	0.83	equilibrium
	50 μινι	1 0	11	
Dhasabaaaalay <i>iriyya</i> ta	22	1.0	1.1	Concentrations are
ADP	23 μινι	04 -	¥	at steady state
ATP		-31.7	-23	
Pyruvate	51 μM			
		TOTAL:	TOTAL:	
	ΔΠΡ: 1650 μΙΜ	-73.97	-98.27	
	Pi: 1000 μM			

Free energy changes over reactions of Glycolysis in erythrocytes

How enzymes work?

- Create an energetically favorable environment for the reaction to take place
- Lower the activation energy
- Enzymes do not change
 - Reaction equilibrium (K'_{eq})
 - Thermodynamic feasibility of the reaction ($\Delta G'$)
- Enhance reaction rate (velocity)

reaction rate = $\frac{d[P]}{dt}$

Reaction rate is proportional

- Concentration of substrates (reactants)
- Rate constant k

- the amount of product formed increases with time
- a time is reached when there is no net change in the concentration of S or P
- the enzyme is still actively converting S into P and visa versa, but the reaction equilibrium has been attained

 the initial velocity (V₀) for each substrate concentration is determined from the slope of the curve at the beginning of a reaction, when the reverse reaction is insignificant

= Simplifying approach

Initial velocity represents best the enzyme activity – no factors that can decrease it:

- Inhibition products
- pH changes
- Denaturation of enzyme

Initial Velocity

Steady-state

- Pre-Steady state: very short to be observed
- Steady state:
 - [ES] constant
 - V₀ reflects the steady state = approximation

- simple model that accounts for most of the features of enzyme catalyzed reactions
- Postulation of the reversible formation of ES

 $E + S \longrightarrow ES \longrightarrow EP \longrightarrow E + P$

Changes in the Concentration of Reaction Participants = formation rates – breakdown rates

Rate of [S] evolution =
$$\frac{d[S]}{dt}$$
 = $-k_1$ [E] [S] + k_1 [ES]

Rate of [E] evolution =
$$\frac{d[E]}{dt} = -k_1 [E] [S] + k_1 [ES] + k_2 [ES] - k_2 [P] [E]$$

Rate of [ES] evolution =
$$\frac{d[ES]}{dt} = k_1 [E] [S] - k_1 [ES] - k_2 [ES] + k_2 [P] [E]$$

Rate of [P] evolution =
$$\frac{d[P]}{dt} = k_2 [ES] - k_2 [P] [E]$$

= reaction rate

Changes in the Concentration of Reaction Participants = formation rates – breakdown rates

Rate of [S] evolution =
$$\frac{d[S]}{dt} = -k_1 [E] [S] + k_{-1} [ES]$$

Rate of [E] evolution = $\frac{d[E]}{dt} = -k_1 [E] [S] + k_{-1} [ES] + k_2 [ES]$
Rate of [ES] evolution = $\frac{d[ES]}{dt} = k_1 [E] [S] - k_{-1} [ES] - k_2 [ES]$
Rate of [P] evolution = $\frac{d[P]}{dt} = k_2 [ES]$
= reaction rate = V₀

1st assumption: initial rate [P] ≅ 0 k_{-2} [P] [E] ≅ 0

Changes in the Concentration of Reaction Participants = formation rates – breakdown rates

Rate of [S] evolution =
$$\frac{d[S]}{dt} = -k_1 [E] [S] + k_{-1} [ES]$$

Rate of [E] evolution = $\frac{d[E]}{dt} = -k_1 [E] [S] + k_{-1} [ES] + k_2 [ES]$
Rate of [ES] evolution = $\frac{d[ES]}{dt} = k_1 [E] [S] - k_{-1} [ES] - k_2 [ES] = 0$
Rate of [P] evolution = $\frac{d[P]}{dt} = k_2 [ES]$
= reaction rate = V₀

 2^{nd} assumption: steady state [ES] ≅ constant $\frac{d[ES]}{dt} = 0$ 66

$$V_0 = V_{max} \frac{[S_0]}{K_m + [S_0]}$$

 $V_{max} = k_{cat} [E_t]$

 If [S] >> K_m : the rate of product formation is maximum

$$\frac{d[\mathsf{P}]}{dt} = \mathsf{V}_{\max} = k_{cat} \,[\mathsf{E}_{\mathsf{t}}]$$

• If [S] = K_m : the rate of product formation is half of the maximum

$$\frac{d[P]}{dt} = \frac{V_{max}}{2} = \frac{k_{cat} [E_t]}{2}$$

• If [S] << K_m : the rate of product formation depends on both [E] \cong [E_t] and [S] through the efficiency constant k_{cat}/K_m

$$\frac{d[P]}{dt} = V_{max} \frac{[S]}{K_{m}} = [E_{t}] [S] \frac{k_{cat}}{K_{m}}$$

One substrate – one product

• EC 5: isomerases

One substrate – 2 products

- EC 3: hydrolases
- EC 4: lyases

$$E + S \underset{k_{-1}}{\overset{k_{1}}{\longrightarrow}} ES \underset{k_{-2}}{\overset{k_{2}}{\longrightarrow}} EPQ \underset{k_{-2}}{\overset{k_{2}}{\longrightarrow}} EQ + P \underset{k_{-3}}{\overset{k_{-3}}{\longrightarrow}} E + P + Q$$

$$V_{0} = [E_{t}] \frac{k_{2}k_{3}}{k_{2} + k_{3}} \frac{[S_{0}]}{[S_{0}] + \frac{k_{-1}k_{3}(k_{-1} + k_{2})}{k_{1}^{2}(k_{2} + k_{3})}}$$

2 substrates – 2 products

A + B 🔁 P + Q

- EC 1: oxidoreductases
- EC 2: transferases

Sequential Mechanisms

$$V_{0} = [E_{t}] \frac{k_{3} k_{4}}{k_{3} + k_{4}} \frac{[A] [B]}{[A] [B] + [B] \frac{k_{3} k_{4}}{k_{1} (k_{3} + k_{4})}} + [A] \frac{k_{4} (k_{-2} + k_{3})}{k_{2} (k_{3} + k_{4})} + \frac{k_{-1} k_{4} (k_{-2} + k_{3})}{k_{1} k_{2} (k_{3} + k_{4})}$$

Second order reactions

2 substrates – 2 products

A + B 🗾 P + Q

• EC 1: oxidoreductases

• EC 2: transferases

Ping-Pong Mechanisms

2 substrates – 2 products

A + B **~** P + Q

Ping-Pong Mechanisms

EC 2.6.1.1 Glutamate aspartate aminotransferase

L-glutamate + oxaloacetate ↔ 2-oxoglutarate + L-aspartate

Michaelis-Menten Kinetics

Third order reactions

3 substrates – n products

A + B + C **P** + Q + ...

• EC 1: oxidoreductases

- EC 2: transferases
- EC 6: ligases

Many possibilities & combinations:

- Sequential Mechanisms
 - Random
 - Ordered
- Ping-Pong Mechanisms

Ex. ordered ter-ter mechanism: EC 6.2.1.4 succinyl-CoA synthetase

succinyl-CoA + GDP + Pi \leftrightarrow succinate + GTP + CoA-SH В Α С R Q Ρ GDP succinyl-CoA Pi CoA-SH succinate GTP Α В Ρ Q R *k*_1 *k*_5 *k*_3 k_2 k_{22} k_3 k₄ k₋₄ *k*_6 k_{5} Ε EA EAB EABC EPQR EQR ER Ε

Michaelis-Menten Kinetics

Third order reactions

3 substrates – n products

A + B + C **P** + Q + ...

• EC 1: oxidoreductases

- EC 2: transferases
- EC 6: ligases

Many possibilities & combinations:

- Sequential Mechanisms
 - Random
 - Ordered
- Ping-Pong Mechanisms

Ex. Ping-pong mechanism: EC 1.2.1.12 glyceraldehyde-3-P dehydrogenase

glyceraldehyde-3-P + NAD⁺ + Pi \leftrightarrow 1,3-diphosphoglycerate + NADH,H⁺ В С Α Q Ρ glyceraldehyde-3-P NADH,H⁺ NAD^+ 1,3-diphosphoglycerate Pi В Ρ Α k_2 *k*_2 k_3 k_{-3} k₋₄ *k*_5 ΕA EAB FPB FB FAB FABC EAO ΕA

Effect of Various Types of Inhibitors

None $V = V_{max} [S]/([S] + K_m)$ K_m V_{max} Competitive $V = V_{max} [S]/([S] + K_m (1 + [I]/K_i))$ $K_m (1 + [I]/K_i)$ V_{max} Noncompetitive $V = V_{max} [S]/((1 + [I]/K_i) ([S] + K_m))$ K_m $V_{max}/(1 + [I]/K_i)$ Uncompetitive $V = V_{max} [S]/((1 + [I]/K_i) K_m + (1 + [I] K_i' [S]))$ $K_m (1 + [I]/K_i)/(1 + [I]/K_i')$ $V_{max}/(1 + [I]/K_i')$ Mixed $V = V_{max} [S]/((1 + [I]/K_i) K_m + (1 + [I] K_i' [S]))$ $K_m (1 + [I]/K_i)/(1 + [I]/K_i')$ $V_{max}/(1 + [I]/K_i')$ $E + S$ K_1 ES K_2 $E + P$ $-none$ $Competitive$ $Noncompetitive$ $Noncompetitive$ $Noncompetitive$ $E + I$ K_3 EI $K_i = \frac{[E] [I]}{[EI]}$ $Mixed$ $ES + I$ K_3 EIS $K_i' = \frac{[ES] [I]}{[EIS]}$	Inhibition Type	Rate Equation	Apparent Km	Apparent V _{max}
Competitive $V = V_{max} [S]/([S] + K_m (1 + [I]/K_i))$ $K_m (1 + [I]/K_i)$ V_{max} Noncompetitive $V = V_{max} [S]/((1 + [I]/K_i) ([S] + K_m))$ K_m $V_{max} / (1 + [I]/K_i)$ Uncompetitive $V = V_{max} [S]/((1 + [I]/K_i))$ $K_m / (1 + [I]/K_i')$ $V_{max} / (1 + [I]/K_i)$ Mixed $V = V_{max} [S]/((1 + [I]/K_i) K_m + (1 + [I] K_i' [S]))$ $K_m (1 + [I]/K_i)/(1 + [I]/K_i')$ $V_{max} / (1 + [I]/K_i')$ $E + S \rightleftharpoons_{k_1} ES \rightleftarrows_{k_2} E + P$ -noneCompetitive $V = V_{max} [S]/(I + [I]/K_i) K_m + (1 + [I] K_i' [S])$ Noncompetitive $Uncompetitive$ Noncompetitive $K_1 = ES \rightleftarrows_{k_2} E + P$ -Noncompetitive $Wixed$ -Noncompetitive $E + I \rightleftarrows_{k_3} EI$ $K_i = \frac{[E] [I]}{[EI]}$ $ES + I \rightleftarrows_{k_3} EIS$ $K_i' = \frac{[ES] [I]}{[EIS]}$	None	$V = V_{max} [S]/([S] + K_m)$	K _m	V _{max}
Noncompetitive $V = V_{max} [S]/((1 + [I]/K_i) ([S] + K_m)))$ K_m $V_{max} / (1 + [I]/K_i)$ Uncompetitive $V = V_{max} [S]/(K_m + [S] (1 + [I]/K_i')))$ $K_m / (1 + [I]/K_i')$ $V_{max} / (1 + [I]/K_i')$ Mixed $V = V_{max} [S]/((1 + [I]/K_i) K_m + (1 + [I] K_i' [S]))$ $K_m (1 + [I]/K_i)/(1 + [I]/K_i')$ $V_{max} / (1 + [I]/K_i')$ $E + S \rightleftharpoons_{k_1} ES \xleftarrow_{k_2} E + P$ -none-competitiveNoncompetitive-none-competitive V_{max} $K_i = \frac{[E] [I]}{[EI]}$ Mixed $E + I \rightleftharpoons_{k_3} EI$ $K_i = \frac{[E] [I]}{[EI]}$ Mixed $ES + I \rightleftharpoons_{k_3} EIS$ $K_i' = \frac{[ES] [I]}{[EIS]}$	Competitive	$V = V_{max} [S]/([S] + K_m (1 + [I]/K_i))$	$K_{m} (1 + [I]/K_{i})$	V _{max}
Uncompetitive $V = V_{max} [S]/(K_m + [S] (1 + [I]/K_i'))$ $K_m / (1 + [I]/K_i')$ $V_{max} / (1 + [I]/K_i')$ Mixed $V = V_{max} [S]/((1 + [I]/K_i) K_m + (1 + [I] K_i' [S]))$ $K_m (1 + [I]/K_i)/(1 + [I]/K_i')$ $V_{max} / (1 + [I]/K_i')$ $E + S \stackrel{k_1}{\underset{k_3}{\underset{k_3}{\underset{k_3}{\atop{k_3}}}} EI \qquad K_i = \frac{[E] [I]}{[EI]}$ none Competitive Uncompetitive Mixed $ES + I \stackrel{k_3}{\underset{k_3}{\underset{k_3}{\atop{k_3}}} EIS \qquad K_i' = \frac{[ES] [I]}{[EIS]}$	Noncompetitive	$V = V_{max} [S]/((1 + [I]/K_i) ([S] + K_m))$	K _m	$V_{max} / (1 + [I]/K_i)$
Mixed $V = V_{max} [S]/((1 + [I]/K_i) K_m + (1 + [I] K_i' [S]))$ $K_m (1 + [I]/K_i)/(1 + [I]/K_i')$ $V_{max}/(1 + [I]/K_i')$ $E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$ $E + I \xrightarrow{k_3} EI$ $K_i = \frac{[E] [I]}{[EI]}$ $ES + I \xrightarrow{k_3} EIS$ $K_i' = \frac{[ES] [I]}{[EIS]}$	Uncompetitive	$V = V_{max} [S]/(K_m + [S] (1 + [I]/K_i'))$	$K_{\rm m} / (1 + [I] / K_{\rm i}')$	$V_{max}/(1 + [I]/K_i')$
$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$ $= -none$ $= Competitive$ $= Noncompetitive$ $= 0 Noncompetit$	Mixed	$V = V_{max} [S]/((1 + [I]/K_i) K_m + (1 + [I] K_i' [S])$	$K_{m} (1 + [I]/K_{i})/(1 + [I]/K_{i}')$	$V_{max} / (1 + [I]/K_i')$
$ES + I \xrightarrow{k_3} EIS \qquad K_i' = \frac{[ES][I]}{[EIS]}$	$E + S \stackrel{k_1}{\underset{k_{-1}}{\longrightarrow}} ES$ $E + I \stackrel{k_3}{\underset{k_{-3}}{\longrightarrow}} EI$	$E + P$ $K_{i} = \frac{[E][1]}{[EI]}$	 none Competitive Noncompetitive Uncompetitive Mixed 	
	$ES + I \rightleftharpoons_{k_{-3}}^{k_3} E$	$K_i' = \frac{[ES][I]}{[EIS]}$		

Non Michaelis-Menten Kinetics enzymes

- Enzymes that regulate the metabolism = regulatory enzymes
- Display increased or decreased activity in response to certain signals
- At key point on the metabolic map
 - At the start of metabolic pathways
 - At junctions between metabolic pathways
 - Control rates
 - Channel metabolites

Allosteric enzymes

- Reversible & Non-covalent binding of regulatory compounds
- Homotropic:
 - modulator = substrate
- Heterotropic:
 - modulator ≠ substrate
 - = allosteric modulator
 - binds at sites different than the active site
- Conformational changes
- Large proteins
- Multimeric protein (often)

Covalently modulated enzymes

- Reversible & covalent modification by other enzymes
 - Phosphorylation
 - Methylation
 - Adenylation
 - Ribosylation
 - •
- Irreversible & covalent modification by other enzymes
 - Proteolysis

Other mechanisms

- Interaction with regulatory proteins
- Degradation

Allosteric enzymes

Cooperative behavior = binding of a certain ligand influences the affinity of the protein to a further ligand of the same (homotropic) or another type (heterotropic)

Non Michaelis-Menten Kinetics enzymes

Kinetic parameters of enzymes

- enzymes operating in secondary metabolism are, on average, ~30-fold slower than those of central metabolism
- Substrate low molecular mass and hydrophobicity appear to limit K_{M} optimization

Bibliography

Nelson & Cox. Lehninger Principles of Biochemistry. New York: W H Freeman & Co 3rd Ed. (2000) - 4th Ed. (2005) - 5th Ed. (2008) - 6th Ed. (2012)

Berg, Tymoczko & Stryer. Biochemistry. New York: W H Freeman & Co 5th Ed. (2002) - 6th Ed. (2006) - 7th Ed. (2010) - 8th Ed. (2015)

Garrett & Grisham. Biochemistry. Belmont, CA: Thomson Brooks/Cole 3rd Ed. (2004) - 4th Ed. (2010) - 5th Ed. (2012) - 6th Ed. (2016)

Frey & Hegeman. Enzymatic Reaction Mechanisms. New York: Oxford University Press (2007)

Smolke.

The Metabolic Pathway Engineering Handbook Fundamentals - Tools and Applications

CRC Press 1st Ed. (2009)

Stephanopoulos, Aristidou & Nielsen. Metabolic Engineering: Principles and Methodologies

Academic Press - 1st Ed. (1998)

