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PROGRAM

08:30-09:00 – Welcoming with breakfast

09:00-10:50 – AI Methods and Models in Chemistry and (Bio)Catalysis
09:00-09:40 – Invited keynote – Esther Heid (MIT, USA and TU Vienna, AT)

       Machine Learning and Data Curation for Bioretrosynthesis
09:40-09:55 – Short talk – Delphine Dessaux (TBI, FR)

       Design of Symmetrical Multi-Component Proteins using Artificial Intelligence
09:55-10:35 – Invited keynote – Wilhelm Huck (Radboud U., NL)

       Information Processing in Chemical Reaction Networks
10:35-10:50 – Short talk – Mehdi D. Davari (IPB, DE)

       Empowering Data-Driven Protein Engineering with Machine Learning
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11:10-13:00 – AI Methods and Models in (Bio)Catalysis and Synthetic Biology
11:10-11:50 – Invited keynote – Ljubisa Miskovic (EPFL, CH)

       Towards High-Throughput Dynamic Studies of Metabolism: Generative Machine Learning
      Approaches

11:50-12:05 – Short talk – Amir Pandi (INSERM, FR)
       A Multispecies Codon Optimizer Using Transformers

12:05-12:20 – Short talk – Soutrick Das (UCL, UK)
       Designing Neural Network Computation across Engineered Bacterial Communities

12:20-13:00 – Invited keynote – Diego A. Oyarzún (U. Edinburgh, UK)
       Machine Learning Approaches to Cell Factory Design and Optimization

10:50-11:10 – Coffee break and poster session

10:50-11:10 – Coffee break and poster session
Yannick Bernard-Lapeyre (LAAS, FR)

       Building Synthetic Cells through Active Learning and Automation
Sudarshan GC (IIT, IT)

       Machine Learning-Driven Engineering of Shear Stress Sensors in T-Cells to Mitigate
      Exhaustion

Guillaume Gricourt (INRAE, FR)
       AI Methods and Models for Retro-Biosynthesis

Bastien Mollet, Paul Ahavi (INRAE, FR)
       Escherichia coli-based physical reservoir computing: potential and applications

Arnav Upadhyay (IBE, DE)
       Mathematical Modeling of TX-TL Dynamics in Pseudomonas Putida KT2440



FOREWORDS

Over the past few years, there has been a notable convergence
of AI methods in the fields of chemistry and biology.
Techniques as varied as active learning, reinforcement
learning, informed machine learning, physics-informed neural
networks, reservoir computing, generative models, and large
language models have gained prominence in both domains.
The primary objective of the workshop will be to facilitate
knowledge exchange among communities that typically
operate independently fostering a collaborative environment
to explore shared experiences, differences, and challenges
through the lens of AI techniques. The workshop is financially
supported by the PEPR B-BEST, part of the France 2030
initiative, and by the annual symposium of the CNRS
International Research Network in Synthetic Biology (IRN
SYNSYSBIO).
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https://emea01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.pepr-bioproductions.fr%2F&data=05%7C02%7CW.Huck%40science.ru.nl%7C6530eb87ada143bd002808dc263675ac%7C084578d9400d4a5aa7c7e76ca47af400%7C1%7C0%7C638427265298761912%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C40000%7C%7C%7C&sdata=VQTPYN8saVAGh6vZrYAX5EQvODDwIq29HtY1ac8qVbc%3D&reserved=0
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ABSTRACTS - Invited keynotes

Computer-aided retrosynthesis has transformed organic synthesis planning, enabling a
quick and interactive planning of reaction pathways. Yet an equally successful
enzymatic counterpart has remained elusive until recently, where a simple retraining of
popular retrosynthesis frameworks on enzymatic reaction databases obtained a too low
accuracy to be applicable to a multi-step pathway search. This talk elucidates new
advances on this forefront including the curation of a large high-quality dataset of
enzymatic reactions, the development of successful bioretrosynthesis algorithms based
on neural networks and transformers, as well as other machine learning models
predicting reaction outcomes or regioselectivity.

The flow of information is as crucial to life as the flow of energy. Living cells constantly
probe their environment, and processing this information enables cells to adapt their
behavior in response to changes in internal and external environmental conditions.
Chemical reaction networks such as those found in metabolism and signalling pathways
enable cells to sense physical properties of their environment, to search for food, or
maintain homeostasis. Current approaches to molecular information processing and
computation typically pursue digital computation paradigms and require extensive
molecular-level engineering. Despite significant advances, these approaches have not
reached the level of information processing capabilities seen in living systems. 
In this talk, I will discuss our results on implementing concepts of reservoir computing in
molecular systems. I will demonstrate how chemical/enzymatic reaction network can
perform multiple non-linear classification tasks in parallel, predict the dynamics of other
complex systems, and can be used to time-series forecasting. This in chemico
information processing paradigm provides proof-of-principle for the emergent
computational capabilities of complex chemical reaction networks, paving the way for a
new class of biomimetic information processing systems.

Machine Learning and Data Curation for Bioretrosynthesis

Information Processing in Chemical Reaction Networks
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ABSTRACTS - Invited keynotes

Metabolism plays a crucial role in various physiological functions, from growth and
reproduction to immune responses. Engineering metabolism in microorganisms, plants,
and animals allows us to produce chemicals, pharmaceuticals, and fuels, facilitating a
transition to a more sustainable, bio-based society. Understanding metabolism,
predicting its normal functioning under changing environments, and manipulating
genetic interventions' effects are pivotal in advancing biotechnology and medicine. 
Nonlinear dynamic models can help us in these tasks because they comprehensively
portray metabolic processes system-wide. Their unique capability to integrate omics
and physicochemical data within a single mathematical framework makes them
particularly effective for data integration. However, despite their potential for studying
metabolism, large-scale dynamic models are still rare due to challenges in determining
unknown kinetic parameters requiring specialized expertise and advanced
computational methods. Consequently, researchers have yet to adopt these models
widely in academic and industrial circles.
We introduced a novel generative machine learning framework, REKINDLE
(REconstruction of KINetic models using Deep Learning), to democratize access to large-
scale nonlinear dynamic models and facilitate dynamic studies of multiple phenotypes
and large cohorts [1]. By harnessing the predictive capabilities of neural networks, this
framework significantly reduces the substantial computational requirements of
conventional kinetic modeling techniques. Its adaptability to large-scale studies is
further enhanced through transfer learning, enabling the retraining of neural networks
that parameterize kinetic models for new studies using only a small set of data points. 
While this framework enhances the efficiency of model generation, it relies on
preexisting kinetic modeling methods to produce the necessary data for training the
neural networks, which could constrain its wide adoption. To overcome this limitation
without sacrificing the efficiency of model construction, we developed a high-
throughput generative machine learning framework, RENAISSANCE (REconstruction of
dyNAmIc models through Stratified Sampling using Artificial Neural networks and
Concepts of Evolution strategies)[2]. RENAISSANCE uses natural evolution strategies to
efficiently parameterize dynamic models of metabolism without requiring training data. 
We will illustrate the application of these frameworks through several case studies,
showcasing their value for studies that analyze fluctuations in metabolism,
encompassing variations in metabolite and enzyme levels as well as enzyme activities in
health-related and biotechnological contexts. This work could significantly advance the
research community's ability to conduct high-throughput, dynamic metabolism studies.

Towards High-Throughput Dynamic Studies of Metabolism:
Generative Machine Learning Approaches
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2.

Machine learning has emerged as a promising paradigm for the optimization of cellular
systems engineered for chemical production. In this talk I will describe our recent work
at the interface of machine learning and cell factory design. We will first discuss the use
of deep learning to predict protein expression from regulatory sequences commonly
employed to control transcriptional and translational efficiency. In metabolic
engineering, we have developed approaches to predict metabolite production dynamics
from the integration of genome-scale metabolic models and kinetic pathway models, as
well as robust algorithms for mixed-integer optimization of genetic control circuits for
production pathways. We will conclude with recent results on active learning for
improving yield of a complex lipopeptide using metabolomics data. The results
showcase the many opportunities offered by the combination of data-driven and
mechanistic models to improve production of heterologous proteins, secondary
metabolites, and more complex molecules.

Machine Learning Approaches to Cell Factory Design and
Optimization

Ljubisa Miskovic
EPFL (CH)

Diego A. Oyarzún
U. Edinburgh (UK)

https://doi.org/10.1101/2023.02.21.529387
https://doi.org/10.1101/2023.02.21.529387


ABSTRACTS - Short talks

Natural metabolic pathways have been heralded as a viable route to green synthesis of
biofuels and biochemicals. However, these bioprocesses can be difficult to engineer into
chassis microorganisms, and, when successful, are often hampered by the limitations
imposed by complex cellular metabolism, such as toxicity of products and
intermediates, slow growth rates, and maintaining cell viability. An appealing solution to
bypass these issues consists in isolating the metabolic production pathways from the
organism's cytoplasm. Bacterial microcompartments (BMC) are proteinaceous entities
that are composed of a shell encapsulating the enzymes involved in specific pathways.
These BMCs spontaneously self-assemble in the cytoplasm of various bacteria and
could therefore be repurposed for the optimization of in vivo bioproduction processes.
To exploit the properties of the BMCs for the optimization of synthetic pathways, the
organization of each components needs to be controlled, starting with the shell
components. The most abundant components of BMCs shells are hexameric proteins,
called BMC-H, which constitute the most suitable target for engineering new synthetic
compartments. Engineering the monomers to achieve specific interactions could help
control their spatial organization and, ultimately, that of enzymes in the synthetic
microcompartments by covalent links to these monomers. Computational protein
design (CPD) methods, more precisely negative multi-state design approaches that can
consider favorable (positive) and unfavorable (negative) states, are crucial for designing
diverse and specific protein interfaces. To address this negative multi-state design
problem, we developed a hybrid generative AI approach, combining a deep-learned
coarse-grain scoring function, called Effie, with a multi-state automated reasoning
design tool. This approach was applied to RMM, a BMC-H protein, to predict sequence
pairs, A and B, that can self-assemble in heterohexamers ABABAB yet fail to form
homohexamers. Eventually, interaction between a few of designed AB proteins was
experimentally verified using copurification and tripartite GFP techniques.

Design of Symmetrical Multi-Component Proteins using
Artificial Intelligence
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Drawing inspiration from the intricate networks of biological neurons found in the brain,
artificial neural networks (ANNs) have emerged as powerful tools in the field of artificial
intelligence. In our study we explore the integration of ANN computation within bacterial
biofilms. Our novel approach involves spatially arranged, engineered bacterial
populations connected by intercellular signals. In our setup, each neuron is represented
by a colony of engineered bacteria grown on an agar plate. Communication between
colonies is facilitated by diffusible quorum sensing molecules. Signal reception and
processing between colonies are influenced by individual location of colonies mimicking
the spatial organisation of natural bacteria to perform specialization tasks. The
activation function of each neuron is encoded in the bacterial response to diffusible
signals, resembling sigmoid functions commonly used in deep learning. This allows for
the creation of high-pass, low-pass, or non-monotonic activation functions. By
leveraging the additive nature of signal concentration, arbitrarily complex functions are
programmed simply by positioning colonies on the agar plate. In-silico, we have
designed and optimised desired networks of interconnected bacterial colonies to
execute various logic gate functions and achieved desired fold changes in the output
based on different input types. This innovative approach presents a promising avenue
for creating bio-inspired computational systems and molecular classifiers, merging
principles of neural network computation with bacterial behaviour.

Designing Neural Network Computation across Engineered
Bacterial Communities
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ABSTRACTS - Short talks

Protein engineering has become an indispensable tool across various domains such as
biotechnology, biomedicine, and life sciences[1]. Despite significant technological
advances, the full potential of protein engineering remains constrained by limited
screening throughput, hindering efficient exploration of the vast protein sequence
space [2]. Predicting beneficial amino acid substitutions, their combinations, and their
impact on functional properties remains a formidable challenge [3]. In recent years,
data-driven models have emerged as a promising avenue in protein engineering,
capitalizing on advancements in large experimental databanks, next-generation
sequencing (NGS), high-throughput screening (HTS) methods, and artificial intelligence
algorithms [2a, 4]. Particularly, machine learning (ML) has garnered attention for its
ability to navigate the large libraries of protein variants and uncover underlying rules
and effects within the sequence space [4]. ML models optimize protein fitness by
discerning relationships between sequences and their corresponding fitness values
within the landscape [2a, 4].
To leverage ML methods for optimizing protein properties, we introduce PyPEF
(Pythonic Protein Engineering Framework)[5], a versatile ML framework tailored for
data-driven protein engineering and ML-assisted directed evolution. PyPEF combines
ML techniques with signal processing and statistical physics methods, facilitating the
identification and selection of beneficial proteins within a given sequence space through
systematic or random exploration of variant fitness and random evolution pathways. We
evaluated PyPEF's predictive accuracy and throughput performance using common
regression models on four public protein and enzyme datasets.  Nonetheless, effectively
applying ML methods often demands a substantial amount of experimental data, which
can be challenging to obtain within a reasonable timeframe. To tackle this issue and
elucidate epistasis and residue coevolution patterns[3], PyPEF integrates ML techniques
with evolutionary information (called MERGE method[6]). MERGE combines statistical
modelling with an ML model trained on labelled sequence representations to adapt
general protein knowledge to specific proteins of interest. By leveraging wet-lab data
and insights derived from a protein's evolutionary history, MERGE facilitates data-driven
strategies even with limited datasets, typically obtainable from experimentalists. This
approach has significantly accelerated protein engineering experiments with data
scarcity[7], encompassing both directed evolution and rational design approaches. In
essence, MERGE offers a robust solution to current sequence exploration and
combinatorial challenges in protein engineering through comprehensive in silico
screening of the protein sequence space.

Empowering Data-Driven Protein Engineering with
Machine Learning
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A Multispecies Codon Optimizer Using Transformers

The genetic code is a universal set of DNA instructions for cellular protein production,
composed of 64 three-nucleotide codons for 20 natural amino acids. Codon usage refers
to the species-specific preferential selection of synonymous codons. This necessitates
optimization of DNA sequences for gene expression in heterologous hosts especially in
the era of de novo protein design and ever-decreasing DNA synthesis cost. Here, we
introduce CodonTransformer, a novel approach leveraging transformer-based deep
learning models trained on diverse organisms with over a million DNA sequences. Our
model integrates organism-specific codon usage patterns and amino acid-codon
embeddings to efficiently generate host-specific DNA sequences. Evaluation against
existing codon optimization tools demonstrates CodonTransformer's ability to generate
optimal DNA sequences with natural-like long-range code usage patterns across
organisms.
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ABSTRACTS - Posters
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Synthetic biology holds promise for revolutionizing biomedical interventions by
engineering living organisms to exhibit novel functionalities. However, the unpredictable
and inefficient nature of the engineering process poses challenges. In this study, we
present a novel approach leveraging machine learning frameworks to enhance the
predictability and efficiency of engineering mechanobiological sensors aimed at
combating T-cell exhaustion—a critical hurdle in immunotherapy. Specifically, we focus
on engineering shear stress sensors in T-cells, followed by actuators designed to
alleviate T-cell exhaustion. Our methodology integrates principles from both biology and
engineering, harnessing machine learning algorithms to optimize sensor design and
functionality. Through rigorous experimentation and validation, we demonstrate the
efficacy of our approach in mitigating T-cell exhaustion, offering a promising avenue for
the advancement of synthetic biology in immunotherapeutic applications.

Machine Learning-Driven Engineering of Shear Stress Sensors in T-
Cells to Mitigate Exhaustion

AI Methods and Models for Retro-Biosynthesis

Retrosynthesis aims to efficiently plan the synthesis of desirable chemicals by
strategically breaking down molecules into readily available building block compounds.
Having a long history in chemistry, retro-biosynthesis has also been used in the fields of
biocatalysis and synthetic biology. Artificial intelligence (AI) is driving us towards new
frontiers in synthesis planning and the exploration of chemical spaces, arriving at an
opportune moment for promoting bioproduction that would better align with green
chemistry, enhancing environmental practices. In this review, we summarize the recent
advancements in the application of AI methods and models for retrosynthetic and retro-
biosynthetic pathway design. These techniques can be based either on reaction
templates or generative models and require scoring functions and planning strategies to
navigate through the retrosynthetic graph of possibilities. We finally discuss limitations
and promising research directions in this field.

Building Synthetic Cells through Active Learning and Automation

Building a living cell from separate components faces a major hurdle: the huge number
of parameters that must be explored as the system's complexity increases. We address
this challenge by combining automation and active learning algorithms to navigate the
vast experimental parameter space. Our approach integrates (i) robotics for large-scale
exploration of molecular contents (e.g., lipids and PURE system components), (ii) high-
throughput screening of gene-expressing vesicles, and (iii) artificial intelligence to
accelerate the searching of biochemical compositions that lead to improved or novel
vesicle properties.
We developed a workflow for enhancing protein synthesis yield and kinetics using active
learning [1] and Echo-assisted dispensing of 20 different PURE constituents. New
compositions resulting in higher expression levels in bulk reactions have been
discovered. Follow-up experiments aim at encapsulating optimized PURE inside
liposomes to boost up the occurrence of phenotypes that are relevant to build a
synthetic cell. This integrated approach will be applied to the expression and evolution
of larger ‘synthetic genomes'. Moreover, first steps towards a closed-loop optimization
workflow will be established, whereby all key operational steps will be executed in an
autonomous manner.
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ABSTRACTS - Posters
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Synthetic circuits have been the cornerstone of bacteria-based computing since
synthetic biology’s early days. The principle consists in harnessing the unique physical
properties of micro-organisms and particularly bacteria to execute specific tasks such as
biosensing. Based on gene regulation mechanisms, these systems enabled the
implementation of higher-order functions in living cells, but display serious limitations
(such as noise, metabolic burden, and orthogonality issues) restricting the complexity of
the tasks achievable. Here, we present a conceptually different alternative based on
reservoir computing that circumvents some of these limitations.
Bacteria exhibit a variety of non-linear dynamics in response to changes in their growth
environment. Such complex dynamics are not fully understood yet but process
information about the growth conditions. Thus, bacterial phenotype can be considered
as a projection of the growth conditions into an observable space functioning as a
physical reservoir.
In this poster, we describe two possible use cases of bacteria-based physical reservoir
computing. First, using in-silicomodels of Escherichia coli, we demonstrate that bacteria
can be used in a problem-solving framework and we compare it to classic machine
learning methods. Secondly, we designed a biosensing system which would be able to
predict the severity of COVID-19 based on a blood sample from early infected patients.

Keywords: reservoir computing, metabolism,
hybrid model, COVID-19

Escherichia coli-based physical reservoir computing:
potential and applications

Mathematical Modeling of TX-TL Dynamics in
Pseudomonas Putida KT2440

Transcription-translation (TX-TL) coupling represents a potential rate-limiting factor in
the biosynthesis of proteins. Precise and efficient modeling of this process is crucial for
enhancing the overall yield of the target protein product.
The study uses a deterministic, dynamic model founded on differential algebraic
equations (DAE) designed to simulate the in vivo transcription and translation of
individual gene sequences into their respective protein sequences in Pseudomonas
putida. This model originates from an in vitro model developed by Arnold et al. [1] and
was further refined by Nieß et al. [2] to accurately represent Escherichia coli protein
biosynthesis under in vivo conditions. Currently, the model is being translated from
Matlab to the programming language Julia for application in P. putida.
Julia's open-source advantage and computational efficiency make it the optimal choice
over Matlab and Python. The TX-TL model currently under development in Julia closely
approximates the results of the Matlab-based model when applying kinetic parameters
identified for E. coli, with a low error percentage for protein concentration. Following the
assessment of metabolite concentrations and distinctive physiological attributes, the
model will undergo further refinement to suit the requirements of the P. putida.
TX-TL modeling can be used for precise simulation of gene-to-protein translation in P.
putida, crucial for optimizing protein production in synthetic biology. By employing
Julia's computational framework, this approach significantly improves the accuracy and
efficiency of synthetic biological systems.
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